e

)

&

i

REFERENCE MANUAL FOR
NARP, AN ASSEMBLER FOR THE SDS 940

Roger House
Dana Angluin
Laurence P. Baker

Document No. R~-32
Issued January 5, 1968
Revised November 21, 1968
Office of Secretary of Defense
Advanced Research Projects Agency
Washington, D. C. 20325

)

1.0

2.0

3.0
L.0

TABLE OF CONTENTS

Introduection

1.1 Pseudo-history of assembly languages.

1.2 Assembly languages: Some basic constituents and
CONCEPLB. & ¢ ¢ ¢ ¢ ¢ 4 e 4 e e e e e e e e e e

Basic constituents of NARP

2.1 Character set « « + « « + 4 &

2.2 Statements and format

2.3 Symbols, numbers, and string constants. .

2.4 Symbol definitions. + ¢ + 4 4

2.5 Expressions and literals.

2.6 Opcode clasgification . . . « . « « ¢« v « v . .

Ingtructions . . . « ¢« v ¢ ¢ v v v b e e e e e e e

Directives. . . . « .+ ¢ ¢ ¢« v v v v e i e e e

4.1 ASC Generate text (3 characters per word). . .

4.2 BES Block ending symbol.

k.3 BSS Block starting symbol. + . + « . .

L.4 COPY Mnemonic for RCH.

k.5 DATA Generate data «

L.6 DEC Interpret integers as decimal.

4.7 DELSYM Do not output any symbols

4L.8 END End of assembly. . . . « « « . « .

4.9 EQU Equate a symbol to & value

4.10 EXT Define a symbol a8 external

4,11 FREEZE Preserve symbols, opcodes, and macros.

L.12 FRGT Do not output a specific symbol. . . .
4,125 FRGTOP Forget selected opcodes

4.13 IDENT Identification of a package.
4.135 LIBEXT Specify library symbol.

L.14 LIST Set listing controls . . «

4.15 NOLIST Reset listing controls

4,16 OCT Interpret integers as octal

4,17 OPD Define an opcode€. . + « « o « « o o & o &

4.19 POPD Define & programmed operator

4.20 REIORG Assemble relative with absolute origin .

1-1
1-1

1-4
2-1
2-1
2-1
2-3
2-4
2-7
2-11
3-1
L1
L-3
bk
k-5
L6
4-7
4.8
k-9
410
L-11
12
4.13
4-15
4-16
h17
4-18
4-20
4-20
4-22
4-23
424
4-25

~—

5.0

6.0

4,21 REM Type out remark . . « « « « o « + o« « &
4,22 RETREL Return to relocatable assembly .
4.23 TEXT Generate text (4 character per word) .
Conditional assemblies and macros. . « « . » + o+ .
5.1 IF, ELSF, ELSE, and ENDF If steatements . .
5.2 RPT, CRPT, and ENDR Repeat statements. .
5.3 Introduction to macrogs. « « « . .

Figure 1 Information Flow During Macro Processing .

5.4 MACRO, IMACRO, and ENDM Macro definition .
5.4.1 Dummy arguments
5.4.2 Generated symbols.« . .
5.4.3 Concatenation. . . « « « « « « « . .
5.4.4 Conversion of a value to a digit string

5.4.5 A note on subscripts
5.5 NARG and NCHR Number of arguments and number
of characters. e e e e e

5.6 Macro calls. « « « .

5.7 Examples of conditional assembly and macros .
Operating NARP . . « « « « o ¢ ¢« o & o o o &

6.1 Error comments on statements.
6.2 Other error commentS. . . + « + « « o o &

6.3 Starting an assembly.

Appendix A: List of all pre-defined opcodes and pre-

Appendix B:

defined symbols . « + « « « « » o o o o .

Table of ASCII character set for the SDS 94O

L-27
4.28
4-29
5-1
5-1
5-4

5-11
5-15
5-17
5-20
5-22
5-23
5-2h

5-5
5-26
5-28
6-1
6-1
6-1

A-1
A-2

O

Prefatory Note \
"

Certain sections of the following reference manual are
written in a primer-like style, especially parts of the
introduction and the discussion of macros. However, it is
assumed that the reader is familiar with the logical operation
of general-purpose digital computers, and, in particular, is
acquainted with the SDS 940 instruction set (see the SDS
publication, SDS 940 Computer Reference Manual, No. 90 06 LOA,
August, 1966, or the Project GENIE document, SDS 930 Instructions,
Document R-27, October 11, 1966).

Acknowledgment

Much of this manual is similar to the ARPAS manual (ARPAS,
Reference Manual for Time-Sharing Assembler for the SDS 930,

Document R-26, February 24, 1967), written by Wayne Lichtenberger,
and some paragraphs are taken verbatim from the ARPAS manual.

Related Documents

1) For a precise description of the binary program output
by NARP, see Project GENIE document, Format of Binary Program
Input to DDT, Document R-25, January 26, 1967.

2) For a description of the implementation of NARP see
Project GENIE document, Implementation of NARP, Document M-16,

January 25, 1968.

1-1

1.0 Introduction

NARP (EPW éggAS) is a one-pass assembler for the SDS 94O
with literel, subprogram, conditional assembly, and macro
facilities. The source language for NARP, primarily a one-for-
one representation of machine language written in symbolic form,
is very similar to that for ARPAS (another assembler for the 940),
but there are notable exceptions making it necessary to do a
certain amount of transliteration to convert an ARPAS program to
a NARP progran. No further mention will be made of ARPAS
in this manual; for more details see ARPAS, Reference Manual for
Time-Sharing Assembler for the SDS 930, Doc. No. R-26, _
February 24, 1967.

To motivate the various facilities of the assembler, the

following pseudo-historical development of assembly languages

is presented.

1.1 Pseudo-history of assembly languages

A program stored in the main memory of & modern computer
consists of an array of tiny circular magnetic fields, some
oriented clockwise, others oriented counterclockwise. Obviously,
if a programmer had to think in these terms when he sat down
to write a program, few problems of any complexity would be
solved by computers, and the cost of keeping programmers sane would
be prohibitive. To remedy this situation, utility programs
called assemblers have been developed to translate programs
from & symbolic form convenient for human use to the rather
tedious bit patterns that the computer handles. At first these
assemblers were quite primitive, little more than number converters,

in fact. Thus, for example:

Tag Opcode Address

6 76 Poudd
GoueL
} 3

1-2

would be converted into three computer instructions which would

add together the contents of cells 40@ and 4Pl and place the

result in cell 4@2. An assembler for doing this type of conver-

sion is trivial to construct. \
After a time, some irritated programmer who could never #

remember the numerical value of the operation "load the A register

with the contents of & cell of memory" decided that it would not

be too difficult to write a more sophisticated assembler which

would allow him to write & short mnemonic word in place of the

number representing the hardware operation. Thus, the sequence

of instructions shown above became:

”
s
6 STA puge

This innovation cost something, however, namely the assembler
had to be more clever. But not much more clever. The programmer
in charge of the assembler simply added & table to the assembler
(jﬁ% which consisted of all the mnemonic operation nanes (gpcodes)
and an associated number, namely the numerical value of the
opcode. When a mnemonic name, say 'ADD', was encountered by the
assembler during the conversion of a program, the opcode table
was scanned until the mnemonic name was found; then the associated
numerical value (in this case, 55) was used to form the instruc-
tion. Within a month, no programmer could tell you the pumerical
value of XMA.

In & more established field, the innovation of these mnemonic
names would have been quite enough for many years and many
theoretical papers. However, programmers are an irritable lot,
and furthermore, are noted for their ability to get rid of sources
of irritation, either by writing more clever programs or by
asking the engineers to refrain from meking such awkward machines.
And the use of numbers to represent addresses in memory was a

large source of irritation. To see this we need another example:

0 B iox g
j(:;””(2 Son
5 5 o

b LRl e s

1-3

Assuming cell h¢¢ contains -7, this sequence stores zeroes in
cells 5¢¢ through 506 provided that the sequence is loaded in
memory so that the STA instruction is in cell 38p (otherwise,
the BRX instruction would have to be modified). This was the
crux of the problem: Once a program was written, it could only
run from a fixed place in memory and could only operate on fixed
cells in memory. This was especially awkward when a program was
changed, since inserting an instruction anywhere in a program would
generally require changes in many, many addresses. One day a
clever programmer saw that this problem could be handled by a
generalization of the scheme used to handle opcodes, namely,

let the programmer use symbolic names (sngols) for addresses
and have the assembler build a table of these symbols as they
are defined and then later distribute the numerical values
associated with the symbols as they are used. Thus the example
becomes:

CLA

ILDX TABLEN
LOOP STA TABEND,?2

BRX LOOP

(Note that at the same time the programmer decided to move

the tag field to after the address field (simply for the sake

of readability) and to even dispense with it entirely in case

it was zero,) The assembler now has two tables, the fixed opcode
table with predefined names in it, and a symbol table which is
initially empty. There is also a special cell in the assembler
called the location counter (IC) which keeps track of how many
cells of program have been assembled; LC is initially zero.

There is another complication: 1In the above example, when the
symbol TABLEN is encountered, it may not be defined yet, so the

assembler doesn't know what numerical value to replace it with.

.There are several clever ways to get around this problem, but

the most obvious is to have the assembler process the program
to be assembled twice. Thus, the first time the assembler scans
the program it is mainly interested in the symbol definitions
in the left margin (a symbol used to represent a memory address
is called a ;ggg;). In our example, when LOOP is encountered,
it is stored in the symbol table and given the value 2 (because

1-4

it is preceded by two cells; remember that LC keeps track of
this). At the end of pass 1, all symbols defined in the program
are in the symbol table with numerical values corresponding to
their addresses in the memory. So when pass 2 begins, the symbol
table is used exactly as the opcode table is used, namely, when,
for example, LOOP is encountered in the BRX instruction above,

it is looked up in the symbol table and replaced by the value 2.
If the program should later be changed, for example to

CLA

LDB EIGHT

LDX TABLEN
LOOP STP TABEND, 2

EAX 1,2

BRX LOOP

then the assembler will automatically fix up LOOP to have the
value 3 (because of the inserted LDB instruction) and will
convert BRX LOOP to BRX 3 instead of to BRX 2 as before. Thus,
the programmer can forget about adjusting a lot of numerical
addresses and let the assembler do the work of assigning new
values to the symbols and distributing them to the points where
the symbols are used. In addition to the greater flexibility
achieved, symbols with mnemonic value can be used to make the
program more readable.

The use of symbols to stand for numerical values which
are computed by the assembler and not the programmer is the basic
characteristic of all assembly languages. Its inception was
a fundamental breskthrough in machine language programming,dispensing
with much dullness and tedium. And a new breed of programmer
wag born: the assembler-writer. To justify his existence, the
agsembler-writer began to add all sorts of bells and whistles
to his produéts; the primary ones are discussed in the next

gection (with reference to NARP).

1.2 Assembly languages: some basic constituents and concepts

Times: assembly time: when a program in symbolic form is
converted by an assembler to binary

(relocatable) program form.

1-5

load time: when a binary program is converted by a loader to

actual machine language in the main memory of
the computer.

rw time: when the loaded program is executed.

assembler loader

source program > binary program ———————3 object program

Expressions: The idea of using a symbol to stand for an address
is generalized to allow an arithmetic expression (possibly
containing symbols) to stand for an address. Thus, some calcu-
lations can be performed at assembly time rather than at run
time, making programs more efficient.

Literals: Rather than writing LDA Ml and somewhere else defining
ML to be a cell containing -1, the literal capability allows the
programmer to write the contents of a cell in the address field

instead of the address of a cell. To indicate this, the expression

is preceded by '='. The assembler automatically asgsigns a cell
for the value of the expression (at the end of the program):
CLA
LDB =8
LDX = 16%2
LOOP STP TABBEG+16%2,2
EAX 1,2
BRX LOOP

Relocation: A relocatable program is one in which memory locations

have been computed relative to the first word or origin of the
program. A loader (for this assembler, DDT) can then place the
assembled program into core beginning at whatever location may be
gpecified at load time. Placement of the program involves a
small calculation. TFor example, if a memory reference is to the
nth word of & program, and if the program is loaded beginning

at location k, the loader must transform the reference into
absolute location n+k. This calculation should not be done to
each word of a program since some machine instructions,(shifts,
for example) do not refer to memory locations. It is therefore
necessary to inform the loader whether or not to relocate the
address for each word of the program. Relocation information is
determined automatically by the assembler and transmitted as a

relocation factor (rfactor). Constants or data may similarly

qib

7

D

require relocation, the difference here being that the relocation
calculation should apply to all 2L bits of the 940 word, not just
to the address field. The assembler accounts for this difference
automatically.

Subprograms and external symbols: Programs often become quite

large or fall into logical divisions which are almost independent.
In either case it is convenient to break them into pileces and
assemble (and even debug) them separately. Separately assembled
parts of the same program are called subprograms (or packages).
Before a program assembled in pieces as subprograms can be run it
is necessary to load the pieces into memory and link them. The
symbols used in a given subprogram are generally local to that
subprogram. Subprograms do, however, need to refer to symbols
defined in other subprograms. The linking process takes care of
such cross-references. Symbols used for it are called external
symbols.

Directives: A directive (pseudo-opcode is a message to the
assembler serving to change the assembly process in some way.

Directives are also used to create data:

LIST
MESSAGE TEXT '"THIS IS A PIECE OF TEXT'
START LDA ALPHA

The LIST directive will cause the program to be listed during
asgembly, while the TEXT directive will cause the following text
to be stored in memory, four characters to a word.

Conditional assembly: It is frequently desirable to permit the
assembler to either assemble or skip a block of statements

depending on the value of an expression at assembly time; this
is called conditional assembly. With this facility;totally
different object programs can be generated, depending on the values

of a few parameters.

Macros: A macro is a block of text defined somewhere in the
program and given a name. Later references to this name cause
the reference to be replaced by the block of text. Thus, the
macro facility can be thought of as an abbreviation or shorthand

notation for one or more assembly language statements. The macro

1-7

facility is more powerful than this, however, since a macro may
have formal arguments which are replaced by actual arguments when
the macro is called.

One-pass assembly: Instead of processing a source program twice

as was described above (section l.l), NARP accomplishes the same
task in one scan over the source program. The method used is
rather complex and is described elsewhere. (Implementation of
NARP, Doc. M-16)

2.0 Basic constituents of NARP

2.1 Character set

All the characters listed in Appendix B have meaning in #

NARP except for '?' and 'N\'. The following classification of

the character set is useful:

letter: . A-Z

octal digit: 0-7

digit: 0-9

alphanumeric character: letter or digit or colon

terminator: , 3 blank CR (denotes carriage return)
operator: ' HEh e+ [<=> @ ¢

delimiter: " ()] .~

The multiple-blank character (1358) may appear anywhere that a
blank is allowed. All characters with values greater than 778 are
ignored except for multiple-blank character (1358) and carriage
return (1558).

2.2 Statements and format

The logical unit of input to NARP is the statement,a sequence
of characters terminated by a semi-colon or a carriage return.
There are five kinds of statements: ‘
empty: A statement may consist of no characters at all, or only
of blank characters.

comment: If the very first character of a statement is an
asterisk, then the entire statement is treated as a
comment containing information for a human reader.
Such statements generate no output.

The format for the next three kinds of statements is split into

four fields:

label field: This field is used primarily for symbol definition;
it begins with the first character of the statement and
ends on the first non-alphanumeric character {usually a

blank).

2-2

opcode field: This field contains a directive name, a macro

name, or an instruction (i.e., any opcode other than a
directive or macro). The field begins with the first
non-blank character after the label field and terminates
on the first non-alphanumeric character; legal terminatorg
for this field are blank, asterisk, semi-colon, and
carrisge return.

operand field: The operand for an instruction, macro, or

directive sappears in this field, it begins with the first
non-blank character following the opcode field and terminates
on the first blank, semi-colon, or carriage return. Note
that & statement may terminate before the operand field.

comment field: This field contains no information for NARP but

may be used to help clarify a program for a human reader.
The field starts with the first non-blank character after
the operand field (or after the opcode field if the opcode

takes no operand) and ends on & semi-colon or carriage return.

Now we continue describing the kinds of statements:

instruction: TIf the opcode field of a statement does not contain
a8 directive name or a macro name, then the statement is
an instruction. An instruction usually has an expression
as an operand and generates a single machine word of
program. See section 3 for a detailed description of
instructions.

directive: If a directive name appears in the opcode field, then
it is a directive statement. The action of each directive
is uniqgue and thus each one is described separatély (in
Section 4).

macro: A macro name in the opcode field of a statement indicates
that the body of text associated with the macro name should
be processed (see gection 5).

Example of various kinds of statements:

* FOLLOWING ARE TWO DIRECTIVES (MACRO, ENDM) WHICH DEFINF
* THE MACRO SKAP
SKAP MACRO; SKA =4B7; ENDM

(o
\ e

O

* NOW SKAP IS CALLED:

IDA ALPHA

SKAP; BRU BAD IF NEGATIVE THEN FRROR
OKAY ADD BETA NOW A=ALPHA+BETA; BRU GOOD

In subsequent sections the details of instructions, directives,
and macros will be explained, but first some basic constituents

and concepts common to all of these statements will be discussed.

2.3 Symbols, numbers, and string constants

Any string of alphanumeric characters not forming a number
is & symbol, but only the first six characters distinguish the
symbol (thus Q12345 is the same symbol as Q123456). Note that
a symbol may begin with a digit, and that a colon is treated as
a letter (as a matter of good programming practice, colons should
be used rarely in symbols, although they are often useful in
macros and other obscure places to avoid conflicts with other
nemes). In the next section the definition and the rfactors
of symbols are discussed.

A number is any one of the following:

a) A string of digits

b) A string of digits followed by the letter 'D’

c) A string of octal digits followed by the letter 'B'

d) A string of octal digits followed by the letter 'B'

followed by a single digit.

A D~suffix indicates the'number is decimel, whereas & B-suffix
indicates an octal number. If there is no suffix, then the
current radix is used to interpret the nmumber (the current
radix is initially 10 but it may be changed by the OCT and DEC
directives). If the digit 8 or 9 is encountered in an octal
number, then an error message is typed. If the value of a
number exceeds 223-1 overflow results; NARP does not check for
this condition, and in general it should be avoided. A B-suffix
followed by a digit indicates an octal scaling; thus, T4B3=TL{@g@B.

Examples:

symbols: START 1M CALCULATE 14D2 14B10
numbers: 14 18D 773B 777 13BS

C

. —

2-4

A string constant is one of the following:
a) A string of 1 to 3 characters enclosed in double
quotes (").
b) A string of 1 to 4 characters enclosed in single
quotes (').
In the first case the characters are considered to be 8 bits
each (thus only 3 can be stored in one machine word), while in
the second case they are considered to be 6 bits each. In both
cases, strings of less than the maximum length (3 or 4, as the
case may be) are right-justified. Thus
‘Al = 'JJ..ZA' = "A" = "g_;A"
where , denotes a blank. If a string constant is too long, then
an error mesgsage is typed and only the first 3 (or 4) characters
are taken. Normally string constants are not very useful in

address computation, but are most often used as literals:

DA WORD
SKE =1G0"
BRU STOP

Both numbers and string constants are absolute, i.e., their

rfactor is zero.

2.4 Symbol definitions

Since NARP is a one-pass assembler, the statement that a
symbol or expression is "defined" usually means that it is defined
at that instant and not somewhere later in the program. Thus,
assuming ALPHA is defined nowhere else, the following

BETA EQU ALPHA
ALPHA BSS 3

is an error because the EQU directive demands a defined operand
and ALPHA is not defined until the next statement. This convention
is not strictly adhered to, however, since sometimes the state-
ment "XYZ is not defined" will mean that XYZ is defined nowhere
in the program.

A symbol is defined in one of two ways: by appearing as a
label or by being assigned a value with an EQU directive (or

2-5

equivalently, by being assigned a value by NARG, NCHR, EXT
(see below), or by being used in the increment list of a RPT
or CRPT statement). This latter sort of symbol is called

eguated.

Labels: If a symbol appears in the label field of an
instruction (or in the label field of some directives)
then it is defined with the current value of the location
counter (rfactor=l). If the symbol is already defined,
either as a label or as an equated symbol, the error
message '(Symbol) REDEFINED' is typed and the old
definition is completely replaced by the new one.

Equated symbols: These symbols are usually defined by EQU,
getting the value of the expression in the operand field
of the EQU directive. This expression must be defined
and have an rfactor in the range [-15,15). If the symbol
has been previously defined as a label, then the error
message '(Symbol) REDEFINED' is typed and the old definition
is completely replaced by the new one; if the symbol has
already been defined as an equated symbol, then no error
message is given, and the old value and rfactor are
replaced by the new ones. Thus, an equated symbol can be

defined over and over again, getting a new value each time.

A defined symbol is always local, and may also be external.
If a symbol in package A is to be referred to from package B,
it must be declared external in package A. This is done in
one of the following weys:

Declared external by $: If a label or equated symbol is
preceded by a $ when it is defined, then it is declared external.

$LABELL IDA ALPHA
LABEL2 STA BETA, LABEL2 IS LOCAL ONLY
$GAMMA EQU DELTA

@

2-6

Declared external by the EXT directive: There are two cases:
i) EXT has no operand: The symbol in the label field is declared
external; it may have already been declared external or may
even have a $ preceding it.
ii) EXT has an operand: This case is treated exactly like the
case: $label EQU operand:
Certain symbols are pre-defined in NARP, i.e., they already
have values when an assembly begins and need not be defined by

the programmer:

:2ERO: This is a relocatable zero (i.e., value = 0, rfactor = 1).

:IC This symbol is initially zero (rfactor=l) and remains
so until the END directive is encountered and all literals
are output, at which time it gets the value of the location
counter. See the description of FREEZE for a discussion
of the use of this symbol.

* Syntactically this is not a symbol, but semantically
it acts like one. At any given moment, * has the value
of the location counter (rfactor=l), and can thus be used

" to avoid creating a lot of local labels.

Thus CLA; LDX LENGTH
LOOP STA TABLE,2; BRX LOOP

can be written as
CLA; LDX LENGTH; STA TABLE, 2; BRX *-1

If a given symbol is referred to in a program, but is not
defined when the END directive is encountered then it is assumed
that this symbol is defined as external in some other package.
Whether this is the case cannot be determined until the various
packages have been loaded by DDT. Such symbols are called
"undefined symbols" or "external symbol references." It is
possible to perform arithmetic upon them (e.g., LDA UNDEF+l);
an expression in post-fix Polish form will be transmitted to DDT.

2-7

2.5 Expressions and literals

Loosely speaking, an expression is a sequence of constants
and symbols connected by operators. Examples:
100-2%ABC/ [ALPHA+BETA]
GAMMA
P>=Q

4

Following is the formal description (in Backus normal form)

of a NARP expression:

<primary>::=<number>|<string constant>|<symbol>|*|[<expr>]
<expr>: :=Xprimary>|<unary operator> <expr>|<expr> <binary operator> <expr>
<expression>::=<expr>|<literal operator> <expr>

<binary operator>::=t|*|/|+|-|<|<=|=|#|>=|>|&]|! |%
<unary operatoﬁ>::=+l—]@

<literal operator>::= =

Notice that the literal operator is rather special, only
being allowed to appear once in a given expression, and only
as the first character of the expression. Literals are
discussed in greater detail below.

The value of an expression is obtained by applying the
operators to the values of the constants and symbols, evaluating
from left to right except when this order is interrupted by the
precedence of the operators or by square brackets* ({,]); the
result is interpreted as a 24-bit signed integer. The following
table describes the various operators and lists their precedences
(the higher the precedence, the tighter the operator binds its

operands) :

¥*
not parenthesges!

Operator Precedence Comment
* 6 exponentiation; exponent must be > O
* 5 multiplication B ,
/ 5 integer division Y
+ (u) 4 unary plus
- (u) 4 negation (arithmetic)
+ b addition
- 4 subtraction
< 3 less than
<= 3 less than or equal to result of operation is
= 3 equal to 0 if relation is false,
3 not equal to otherwise 1
>= 3 greater than or equal to
> 3 greater than
@ (u) 2 logical not
& 1 logical and logical operation
H 0 logical or applied to all
% 0 logical exclusive or 2h bits

The rfactor of an expression is computed at the same time

the value is computed. There are constraints, however, on the

rfactors of the operands of certain operators, as shown in the
table below: (Note: Rl is a symbol with an rfactor of 1, R2
is & symbol with an rfactor of 2).

relocation factor(s) relocation factor
operator of operand(s) of result examples
) 214=16,
R1t1(error)
& all operands absolute absolute 78&3=3,
Vi 6&R1(error)
/ h’/2=2:
R1/1(error)
* at least one rfactor found by multi- 3¥R2 has
must be absolute, the | plying the value rfactor of 6,
other is arbitrary of the absolute R1*R1(error)
operand times the
rfactor of the
other operand
<<= = arbitrary relocation R1=R1 is true C:)
>=> factors, but must be absolute R2>R1(error)
egual
+ - found by spplying R1+R2 has
(unary and|arbitrary rfactors | operator to the relocation
binary) relocation factors factor of 3
of the operands

2-9

The final rfactor of an expression must be in the range
[-8191, 8191].

If an expression contains an undefined symbol or if it is a
literal, then the entire expression is undefined.

Although a literal is a special kind of expression, it is
often convenient to think of it as a quite separate entity. The
use of literals is discussed below.

2«10

Programmers frequently write such things as
LDA FIVE

where FIVE is the name of a cell containing the constant 5. The
programmer must remember to include the datum FIVE in his program

somewhere. This can be avoided by the use of a literal.
LDA =5

will automaticaelly produce a location containing the correct
constant in the program. Such a construct is called a literal.
When a literal is encountered, the assembler first evaluates the
expression and looks up its value in a table of literals constructed
for each subprogram. If it is not found in the table, the value
is placed there. In any case the literal itself is replaced by
the location of its value in the literal table. At the end of
assembly the literal table is placed after the sub-program.

The following are examples of literals:

=10 =4B6 =ABC*20-DEF/12 ="HELP"

=2>AB (This is a conditional literal. Its value will
be 1 or O depending on whether 2>AB at assembly
time.)

Some programmers tend to forget that the literal table
follows the subprogram. This could be harmful if the program
ended with the declaration of a large array using the statement

ARRAY BSS 1

It is not strictly correct to do this, but some prdgrammers
attempt it anyway on the theory that all they want to do is to
name the first cell of the array. The above statement will do
that, of course, but only one cell will be reserved for the
array. If any literals were used in the subprogram, they would
be placed in the following cells which now fall into the array.
This is, of course, an error. Other than this exception, the

programmers need not concern himself with the locations of the

literals.

O

O

3.0 Instructions

There are three different syntactical forms of instruction
statements, depending on the class of the instruction in the “
opcode field: (In the following, syntactical elements enclosed
in square brackets are optional; they may or may not be present.)

class @: [[$)label] opcode[*] [operand[,tag] [comment]]
class 1: [[$)label] opcodel(*] [comment]
class 2: [[$)label] opcode[*] operand(,tag] [comment]

Each of the syntactical elements is discussed below:
$: A label preceded by a doller sign is declared external
(see section 2.4).
label : The lebel is defined with the current value of the
location counter (rfactor=l).
opcode : The opcode must be either an instruction which is
already defined or e number. If it is a number, then
the value (mod 29) of the number is placed in b@-b8
(bit @ through bit 8) of the instruction, and it is
treated as a class @ opcode (i.e., operand optional).
* + If an asterisk follows immediately after the opcode
then b9 (the indirect bit) of the instruction is set.
operand: The operand is an expression which may or may not be
defined and which has any rfactor. The expression may
be preceded by '/' or '« (or both in any order);
these characters cause the following bits to be set:
/ bl (index bit)
- b9 (indirect bit)
Thus:

LDA /VECTCR is the same as LDA VECTOR,2
STA «POINTER is the same as STA* POINTER
LDA «/COMPLX is the same as LDA* COMPLX,2

C

3-2

The tag is an expression which must be defined and
gbsolute. Its value (mod 23) is placed in b@-b2 of

tag

the instruction.
comment: The comment does not affect the instruction generated;

it may be listed.

In addition to its class, a given opcode is designated as
being either a shift instruection or a non-shift instruction.
This has nothing to do with whether the action of the instruction
involves shifting, but is simply a way of distinguishing between
two kinds of instructions. TFor non-shift instructions, operands
are computed mod 2lu, while for shift instructions there are two
possibilities:

a) If the indirect bit is set by '¥' or '«', then the value
of the opcode is trimmed so that blO-b23 ere zero, and
then the instruction is treated as if it were a non-
shift instruction.

b) If the indirect bit is not set as above, then the
operand is computed mod 29; it must be defined and

absolute.

D

41

4.0 Directives

There are many directives in NARP; although some of them are
similar, each in general has its own syntax. TFollowing is a d

concise summary:

Class Directive Use or Function Section
Mnemonic for instructions: COPY Mnemonic for RCH . 4.4
Data generation + DATA Generate data 4.5
ASC Generate text
(3 charactersper word) 4.1
TEXT Generate text (4
characters per word) 4.23
Value declaration : EQU Equate a symbol to
a value 4.9
EXT Define a symbol as
external 4.10
NARG Number of arguments 5.5
NCHR Number of characters 5.5
OPD Define an opcode 4.17
POPD Define a programmed
operator 4.19
Asgembler control : BES Block ending symbol 4.2
BSS Block starting symbol 4.3
END End of assembly 4.8
DEC Interpret integers
as decimal 4.6
oCcT Interpret integers
as octal 4,16
FRGT Do not output a
specific symbol 4,12
FRGTOP Suppress output
of opcode 4.125
IDENT Identification of

a package 4.13

L.2

/ A7
(M” Class Directive . Use or Function Section
DELSYM Do not output eny
symbols h.7
RELORG Assemble relative Y
with absolute origin 4,20 ﬂ
RETREL - Return to relocatable
assembly 4,22
- FREEZE Preserve symbols,)
opcodes, and macros L.11
Output and listing
control : LIST Set listing controls b1k
NOLIST Reset listing controls L4.15
PAGE Begin a new page on
the listing 4.18
: REM Type out remark 4,21
ﬂ <:) Conditional assembly
; and macros s IF Begin if body 5.1
] ELSF Alternative if body 5.1
)
; ELSE Alternative if body 5.1
: ENDF End if body 5.1
RPT Begin repeat body 5.2
CRPT Begin conditional
repeat body 5.2
ENDR End repeat body 5.2
MACRO Begin macro body 5.4
: . IMACRO Alternative to MACRO 5.4
' ENDM End macro body 5.4

In the remainder of this section, all directives listed
above except for those associated with conditional assembly and

macros are described.

C

-3

4.1 ASC Generate text (3 characters per word)

[[$)1abel] ASC string [comment]

This directive creates a string of 8-bit characters stored
3 to a word. The string starts in the leftmost character of a
word and takes up as many words as needed; if the last word is
not filled up completely with characters from the string, then
the right end of the word is filled out with blanks. If a label
appears, its value is the address of the first word of the
string. The syntacticel element "string" is usuelly any
sequence of characters (not containing & single quote) surrounded
by single quotes. However, the first character encountered
after 'ASC' is used as the string delimiter (of course, blanks

and semi-colons cannot be used as string delimiters).

Exanmples:

ASC 'NO SINGLE QUOTES, HERE IS A SEMI-COLON:;'
$ALPHA ASC $HERE IS A SINGLE QUOTE: '$

L.2 BES Block ending symbol

[($)1ebel] BES expression [comment]

The location counter is incremented by the value of the
expression in the operand field and then the label (if present)
is given the new value of the location counter. Thus, in
effect, a block of words is reserved and the label addresses
the first word after the block. The expression must be defined
and ebsolute. This directive is most often used in conjunction
with the BRX instruction, as in the following loop for adding
together the elements of an array:

IDX =~LENGTH; CLA; ADD ARRAY,2

BRX *-1; STA RESULT; HLT
ARRAY BES LENGTH

4,3 BSS Block starting symbol

[[$]1ebel] BSS expression [comment]

This directive does exactly the same thing as BES except that
the lebel (if present) is defined before the location counter
is changed. Thus, the label addresses the first word of the
reserved block. It should be noted that the expression for both
BES and BSS may have a negative value, in which case the location

counter is decremented.

o

O

L.4 COPY Mnemonic for RCH

[{$)1avel] cCOPY S178ps g { comment] 5

(where si are symbols from a special set associated with the
COPY directive)

The COPY directive produces an RCH instruction. Tt takes
in its operand field a series of special symbols, each standing
for a bit in the address field of the instruction. The bits
selected by a given choice of symbols ere merged together to
form the address. TFor example, instead of using the instruction
CAB (O4600004), one could write COPY AB. The special symbol
AB has the value 0000000L.

The edvantage of the directive is that unusual combinations
of bits in the address field--those for which there exist
normally no operation codes--may be created quite naturally.

The special symbols are mnemonics for the functions of the
various bits. Moreover, these symbols heve this special meaning

only when used with this directive; there is no restriction on

their use either as symbols or opcodes elsewhere in a program.

The symbols are:

Symbol Bit Function

A 23 Clear A

B 22 Clear B

AB 21 Copy (A) » B

BA 20 Copy (B) » A

BX 19 Copy (B) =X

XB 18 Copy (X) - B

E 17 Bits 15-23 (exponent part) only
XA 16 Copy (X) - A

AX 15 Copy (A) -»X

N 1k Copy -(A) —» A (negate A)
X 1 Clear X

To exchange the contents of the B and X registers, negate A,
and only for bits 15-23 of all registers, one would write
cory BX,XB,N,E

b7

4.5 DATA Generate data

[[$)1ebel] DATA €11,€25€35+ 1 [comment]

The DATA directive is used to produce data in programs.
Each expression in the operand field is evaluated and the 2L-bit "
values assigned to increasing memory locations. One or more
expressions may be present. The label is assigned to the
location of the first expression. The effect of this directive
is to create a list of data, the first word of which may be
labeled.

Since the expressions are not restricted in any way, any
type of date can be created with this directive. TFor example:

DATA 100,-217B,START ,AB¥2/IEF, 'NUTS',5

creates six words.

()

~——

4.8
4.6 DEC Interpret integers as decimal

DEC [comment]

The radix for integers is set to ten so that all followine
integers (except those with a B-suffix) are interpreted as
decimal. When an assembly begins the radix is initialized to

ten, so IEC need never ve used unless the OCT directive is used,

4.7 DELSYM Do not output any symbols

DELSYM [comment]

If DELSYM appears anywhere in a program being assembled,
the symbol table and opcode definitions will not be output
by NARP when the END directive is encountered. The main purpose
of this directive is to shorten the object code generated by
the assembler, especially when the symbols are not going to
be needed later by DDT.

M

4.10
4.8 END End of assembly

END [comment)

When this directive is encountered the assembly terminates.
If the LIST directive has been used then various information may

be listed, for example undefined symbols.

C

L-11

4,9 EQU Equate a symbol to a value

[$)symbol EQU expression [comment)

The symbol is defined with the value of the expression; if
the symbol is already defined, its value and rfactor are changed.
The expression must be defined and must have an rfactor in the
range [~15,15]. If the symbol has been declared external before
or if it has been forgotten (using FRGT) then EQU preserves this

information. Thus

$ALPHA EQU 4
ALPHA EQU 3

will cause ALPHA to be declared external but with a value of
three at the end of the assembly (provided ALPHA is not chenged
again before the END directive). See section 2.4 for more

discussion of EQU.

#

<j\‘ 4,10 EXT Define a symbol as external
i [$]symbol EXT [expression [comment]])

This directive is used to declare symbols as external.

section 2.4 for a discussion of the various cases.

h-12

See

4-13

L4.11 FREEZE Preserve symbols, opcodes, and mecros

FREEZE [comment]

4

Sometimes subprograms share definitions of symbols, opcodes,
and macros. It is pessible to cause the assembler to take note
of the current contents of its symbol and opcode tables and the
currently defined macros and include them in future assemblies,
eliminating the need for including coples of this information
in every subprogram's source language.

When the FREEZE directive is used, the current table
boundaries for symbols and opcodes and the storage area for macros
is noted and saved away for later use. These tables may then
continue to expand during the current assembly. (A separate
subprogram may be used to make these definitions; it will then
end with FREEZE; END.) The next assembly may then be started
with the table boundaries returned to what they were when FREEZE
was last executed. This is done by entering the assembler
at its "continue" entry point, i.e., by typing

@ CONTINUE NARP.
Note that the assembler cannot be released (i.e., another
subsystem like QED or DDT cannot be used) without losing the
frozen information.

In conjunction with the FREEZE directive, the predefined
symbol :IC: is useful, especially when writing large
re-entrant programs. Following is a three-package program
using FREEZE and :IC:.

Pl IDENT
<definitions of macros, opcodes, and global equated
symbols>
<definition of working storage (i.e., read-write
memory >
FREEZE
END

P2 IDENT
BSS :IC :-:ZERO:
<read-only code>
END

e

e

L1k

%; IDENT
BSS 11IC - :ZERO:
<read-only code>
END

The FREEZE directive at the end of Pl preserves all the
definitions in this package so they can be referenced in packages
P2 amd P3. By including the definitions of all the working storage
cells in the preserved definitions, these symbols need not be
declared as external. Also, it makes "external" arithmetic on these
symbols possible in P2 and P3, and it reduces the number of
undefined symbols printed at the end of an assembly. Packazes
P2 and P3 start with the rather vpeculiar looking BSS in order
to set the location counter so that references between the
packages will be correct. This is the main purvpose of :IC:,
it saves the final value of the location counter from the
previous package for use by the current package. In order for
this scheme to work, all three packages must be loaded at the
same location, usually O for large re-entrant programs.

Assume ALPHA is a symbol defined in P1. Unless some
special action is taken, ALPHA will be output to DDT three times,
once at the end of Pl, once at the end of P2, and once at the end
of P3. To avoid this, all symbol and opcode definitions are
marked after they have been output once so that they won't be

output again.

4-15

.12 FRGT Do not output a specific symbol

FRGT Sy,85 -« [comment]

The symbols si (which must have been previously defined) #
are not output to DDT. FRGT is especially useful in situations
where symbols have been used in macro expansions or conditional
assemblies, and have meaning only at assembly time. When DDT
is later used, memory locations are sometimes printed out in
terms of these meaningless symbols. It is desirable to be
able to keep these symbols from being delivered to DDT, hence
the FRGT directive.

L-16

4,125 FRGTOP Forget selected opcodes

FRGTOP { comment]

SysSps e

The g must be opcodes. The specified opcodes are marked
as forgotten and will not be output to DDT. Since DDT knows
in advance about the standard instruction set (e.g., LDA, BRS,
CIO), FRGTOP o\ such opcodes has no effect. It follows that
the chief use of FRGTOP will be to suppress output of opcodes
generated by OPD and POPD.

FRGTOP does not take a label.

O

~

b.17

4,13 IDENT Identification of a package

symbol IDENT [comment]

The symbol in the label field is delivered to DIT as a
special identification record. DIT uses the IDENT name in con-
junction with its treatment of local symbols: in the event of
a name conflict between local symbols in two different subprograms,
DDT resolves the ambiguity by allowing the user to concatenate
the preceding IIENT name with the symbol in question. Also,
during an assembly the first six characters of the symbol followed
by the word 'IDENT' are typed on the teletype to show the user
what package is being assembled. The progress of an assembly
can be followed by placing IDENT's at various points in the
package.

N

4-18

4.135 LIBEXT Specify library symbol

Symbol LIBEXT [comment]

This directive causes "symbol" to be output to the binary
file, marked as a special "library-symbol." The resulting
binary file must then be mauled by a library-making program
before it will be intelligible to the loader in DDT.

The library-maker takes a binary file and moves all of the
library-symbols to the beginning of the program, and puts the
result on g file as a2 "library-program.” When a "library-file"
{whjch contains one or more library-programs) is loaded into
DDT, the loader seans the list of library symbols before each
library-program. If any of them is currently undefined (i.e.,
referenced but notdefined in previously loaded programs), the
associated library-program is loaded normally; otherwise, it
is not loaded.

For example, one could write a sine and cosine library program:
SIN LIBEXT
*SINE ROUTINE:; ANGLE IN RADIANS

$SIN ZRO SINX
(sine routine code)

Ccos LIBEXT

*COSINE ROUTINE: ANGLE IN RADIANS
$cos ZRO CoSX
(cosine routine code)

END

Assemble it with NARP and use the library-maker to put it on

a libraery-file as a library-program. Then, if either "SIN"

or "COS" is undefined when the library-file is loaded, both

the sine and cosine subroutines will be loaded, and the symbols
"SIN" and "COS" defined as the entry points of the routines
(respectively). (If one desired to have them load independently,

each subroutine could be made into a separate library-program.)

J—

419

(Note: The library-program is loaded normally once the decision
to load it has been made; thus, undefined library-symwbols will
only be defined and linked in previously-loaded programs if they
are defined and made external in the library-program in the

usual fashion (as in the example).)

L.20

.14 LIST Set listing controls

4.15 NOLIST Reset listing controls

LIST
NOLIST

o [comment)]

[s

There are variocus booleans which control the format in
which statements are listed (certain fields and/or certain
kinds of statements may be suppressed, or listed selectively).
The user is allowed to set (or reset) these booleans via the
LIST (or NOLIST) command. Each of the s, may be one of the
following special symbols:

S, Set (or reset) What is (or is not) listed

ICT the current value of the location
counter, in octal

SICT the symbolic address of the current
value of the location counter

the value of the statement, if it is

VAL one of the directives: EQU, NCHR,
NARG, IF, ELSF. (in octal)

SRC the symbolic source code

coM the comment field of a statement, a
comment statement

CALL macro and RPT calls

DEF MACRO and RPT definitions

EXP macro and RPT expansions

SKIF the skipped parts of an IF statement

EXT external symbol references (at the

end of the assembly

AR

T U

s

b2l

In addition, s, may be "ALL", which will cause all of the
booleans in the table to be set (or reset).

If a LIST (or NOLIST) directive is encountered for which
no arguments (si) have been specified, NARP will begin (or
cease) listing statements on the LISTING FILE (the teletype,
in case no other listing file is specified when the assembly
is begun) according to the current settings of the listing
booleans. Including "GO" among the arguments for a LIST
(or NOLIST) will have the same effect.

When NARP is called, the listing booleans are initialized

as follows:

Set: ICT, VAL, SRC, COM, CALL, DEF, EXP, EXT
RESET: SICT, SKIF

and NARP is in its "no list" state, i.e., listing will not
be started unless (and until) the program initiates it with a
LIST directive.
Examples of the LIST directive:

NOLIST ALL Resets all format booleans
LIST SRC, GO Sets SRC boolean and starts listing.

(only the source code will be listed)
Examples of listing format: ’
ICT SICT VAL SRC coM

PP
(—"‘—-"\(’\ﬁ e { RYRY
00117 (A) 3 “a EQU 6/2 (SET A)
00117 (HERE) HERE LDA A*B,2
00120 (HERE+1) CLB

]

.22

C R L,16 OCT Interpret integers as octal

oCT [comment]

- The radix for integers is set to eight so that all following K
integers (except those with a D-suffix) are interpreted as octal.

4,17 OPD Define an opcode

symbol OPD value[,class[,shift kludgel]

The symbol in the label field is defined as an opcode with
a value equal to the first expression in the operand field. All
expressions in the operand field must be defined and absolute; if
an optional expression does not appear then the value O is assumed.
value : computed mod o2 (see important note below)
class : mist have a value of 0,1, or 2:

0 - the opcode may or may not have
an operand
1 - the opcode does not take an

operand
2 - the opcode requires an operand
shift kludge: mist have a value of O or 1:

0 - non-shift instruction
(see section 3)
1 - shift instruction (see section 3)

Note: Although an opcode that takes operands can be defined with
bits b10-b23 set, the user must be careful of what he is doing.
In particular, if such an opcode avpears in an instruction which
contains a literal or an undefined value then bits bl0-b23 of the
opcode are set to zero.

If the symbol in the label field is already defined as an
oncode then the old definition is lost.
Examples:

ADD OPD 05585,2

CLA OFD 046000018, 1

RCY OPD 0662B4,2,1

NOP OPD 02085

L2k

L.19 POPD Define a programmed operator

symbol POPD valuel,class(,shift kludge]]

This directive does exactly what OPD does with one addition:
The instruction BRU¥ is placed in the memory location whose
address is in b2-b8 of the value given to the symbol (this
address must be in the range [100B, 177B]). Thus

MIN POPD 10085,2

IMIN SKG¥ 0 THE CALL 'MIN ALPHA' WILL
BRR 0 CAUSE THE MINIMUM OF
LDA% 0 A-REG AND ALPHA TO BE
BRR 0 LEFT IN A-REG.

will cause BRU IMIN to be loaded in word 100B.

4-25
4.20 RELORG Assemble relative with absolute origin

RELORG expression [comment]

On occasgion it is desirable to assemble in the midst of
otherwise normal program & batch of code which, although loaded
in core in one position, is destined to run from another position
im memory. (It will first be moved there in a block.) This is
particularly useful when preparing program overlays. The
expression in the operand field (which must be absolute and
defined) denotes an origin in memory. The following occurs when
the directive is encountered:

a.) The current vwalue of the location couhter is saved, and
in its place is put the absolute origin (i.e., the
value of the expression). This fact is not revealed
to DT, however, so during loading the next instruction
assenmbled will be placed in the next memory cell available
as 1f nothing had happened.

b.) The mode of assembly is switched to absolute, i.e., all
symbols defined in terms of the location counter will
be absolute,

It is possible to restore normal relocateble assembly (see section
L,22).

As an example of the use of RELORG, consider a progranm
beginning with RELORG 300B. The assembler's output represents
an absolute vrogram whose origin is 003008, but which can be
loaded anywhere using DDT in the usual fashion. Of course,
before executing the program it will be necessary to move it to
location 003008.

As another example, consider the following use of RELORG and
RETREL:

<normal relocatable program>

RELORG 100B

<gbsolute vrogram with origin at 100B>
RELORG 200B

<absolute program with origin at 200B>

“w

) RETREL

<normeal relocatable program>

RELORG 30CB

<abgolute program with origin at 3I00B>
END

426

Yo7

4,21 REM Type out remark

REM text

This directive causes the text in its operand and comment
fields to be typed out either on the teletype or whatever file
has been designated as the text file (see section 6.2). This
typeout occurs regardless of what listing controls are set. The
directive may be used for a variety of purposes: It may inform
the user of the progress of assembly; it may give him instructions
on what to do next (this might be especially nice for complicated
assemblies); it might ammounce the last date the source language
was updated; or it might be used within complex macros to
show which argument substrings have been created during
expansion of a highly nested macro (for debugging purposes).

o

.

L, 22

4.28
RETREL Return to relocatable assenmbly

RETREL [comment]

This directive is used when it is desired to return to

relocatable assembly after having done a RELORG. It is not

necessary to use RETREL unless one desires more relocatable

program. An example of the use of RETREL is shown in section

.20,

The effects of RETREL are
a.) to restore the location counter to the value it would
have had if the RELORG (s) had never appeared, and

b.) to return the assembly to relocatable mode so that

labels are no longer absolute.

: 429
@

4,23 TEXT _ Generate text (4 character per word)

[[$]1abel] TEXT string [comment]

This directive is exactly the same as ASC (see section 4.1) #
except that characters are taken as six bits each and are stored

four to a word.

QC\ |

ww,,n.mm.mrmw«*nw"wﬂ'“’” "ty

P : r

C

5-1

5.0 Conditional assemblies and macros

5.1 Ir, ELSF, ELSE, and ENDF If statements

It is frequently desirable to permit the assembler either‘to
assemble or to skip blocks of statements, depending on the value of
an expression at assembly time. This is primarily what is meant

by conditional assembly. In NARP, conditional assembly is done

by using either an if statement or a repeat statement.

The format of an if statement is

IF expression { comment]
< if body >
ENDF [comment]

The if body is any block of NARP statements, in particular, it may

contain directives of the form

ELSF expression { comment)

and
ELSE [comment]

If the operand of IF is true, then the block of code up to the
matching ENDF (or ELSF or ELSE) is processed; otherwise, it is

skipped. The values for true and false are:

true : value of expression > @
false : value of expression < ¢

Examples:
IF ¢
LDA ALPHA 7
STA BETA J} processed
ENDF
IF 4
LDA GAMMA .
skipped

STA DELTA
ENDF

5-2

Often there are more than two alternatives, so the ELSF

directive is used in the if body. When ELSF is encountered while

skipping a block of statements, its operand is evaluated (just

as for IF) to decide whether to process the block Tollowing the

ELSF.
Examples:

Ir
LDA
ELSF
LDA
ENDF

IF
IDA
ELSF
LDA
ENDF

Ir
LDA
ELSF
LDA
ENDF

IF
DA
ELSF
LDA
ELSF
LDA
ENDF

g>1
ALPHA
1> ¢
BETA

$>1
ALPHA
6>1
BETA

1>9
ALPHA
1> 9
BETA

g>1
ALPHA
1> 9
BETA
1> 6
GAMMA

skipped

processed

skipped

skipped

processed

skipped

skipped
processed

skipped

From the last two examples above it should be clear that either

no blocks are processed or precisely one is; thus, as soon as one

block is processed, all following blocks are skipped regardless

of whether the ELSF expressions are true.

>-3

An ELSE directive is equivalent to an ELSF directive with s

true expression.

Example:
IF > 1
LDA ALPHA skipped
ELSE
LDA BETA processed
ENDF

As a more general example, consider the following:

IF el
< body 1 >
ELSF e2
< body 2 >
ELSF e3
< body 3 >
ELSE

< body 4 >
ENDF

There are four possibilities:

a) el> ¢ : process body 1, skip the other three
b) el <@, e2> ¢ : process body 2, skip the other three
c) elf_¢! e2 S¢’

e3> ¢ : process body 3, skip the other three
d) el <@, e2< @,
e3 < ¢ : process body 4, skip the other three

The bodies between the IF, ELSF, ELSE, and ENDF directives
mey contain arbitrary NARP statements, in particular they may
contain other if statements. This nesting of if statements may
go to any level.

When evaluating the expression in the operand field of IF or
ELSF, all undefined symbols are treated as if they were defined with

value -l1. These expressions must be absolute.

F 1

D

5l

5.2 RPT, CRPT, and ENDR Repeat statements

A repeat statement is a means of processing the same text many

times. The format is

({$)1abell RPT expression[,increment list] {comment)
< repeat body >
ENDR { comment]

The value of the RPT operand (which must be defined and absolute)
determines how many times the repeat body will be processed,while
the increment list (described below) is a mechanism to allow the

values of various symbols to be changed each time the repeat body

is processed.

Example:
ABC RPT L
DATA 0
ENDR

This is equivalent to

ABC DATA 0
DATA 0
DATA 0
DATA 0

An increment list has the form (s=ell,e2])...(s=el[,e2])
where s stands for a symbol and el and e2 denote expressions
(which must be absolute; undefined symbols are treated as if they
were defined with the Qalue ~-1). Before the repeat body is processed
for the first time, each symbol in the list is given the value of
its associated el. Thereafter, each symbol is incremented by the
value of its associated e2 just before the repeat body is processed.
If e2 is missing, the value 1 is assumed. There is no limit on

the number of elements that may appear in an increment list.

—

Example:

RPT 3, (I=4)(3=0, -1)
DATA I

DATA I*T+1

ENDR

This results in code equivalent to the following:

DATA L

DATA O*4+1 =1
DATA 5

DATA - 1*5 +1 ..'-.-.--.L].
DATA 6

DATA ~2%641 =-11

There is another format for RPT:

[{$]11abel] RPT (s=ell,e2],e3){increment list] [comment]
In this case, the number of times the repeat body is processed is
determined by the construct (s=ell,e2],e3). This is the same as
an increment 1list except that it includes a third expression
(which must be absolute; all undefined symbols are treated as if
they were defined with the value -1), namely a bound on the value
of the symbol. As soon as the bound is passed, processing of the
repeat body stops. In the example above, the same effect could
have been achieved by writing the head of the repeat statement as

RPT (J=0,-1,-2)(I=l)
or as
RPT (1=l,6)(J=0,-1)

Note that the bound does not have to be positive or greater than
the initial value of the symbol being incremented; the algorithm
for determining when the bound has been passed is given below.
Occasionally one wishes to perform an indefinite number of
repeats, terminating on an obscure condition determined in the
course of the repeat operatiQn. The conditional repeat directive,

CRPT, serves this function. Its effect is like that of RPT (and

5-6

its repeat body is also closed off with an ENDR) except that instead

of giving a number of repeats, its associated expression is evaluated

Just prior to esach processing of the repeat body to determine

whether to process the block.

As for 1F, > O means true, < O means ,,

false; the expression must be defined and absolute each time it is

evaluated.

[[$]1abel]

The form is

CRPT expression[,increment list]

For example, one may write

or

CRPT X>Y

CRPT STOP, (X=1,2) (Y=-3)

Note that the statement

will cause an infinite number of repeats.

CRPT 10

{ comment]

The following flowcherts describe precisely the actions of

the various repeat options:

skip the whole;
repeat block

RPT expression(,increment list]

start

\

count: = value of expression

i

no

-

yes ey
count < 0

i

N~

initialize symbols in increment
list;evaluate all e2 expressions

I N

N
process the repeat body k___.

the increment 1list

increment the symbols in

ves Ccount = O

no

i
'
}

The el and e2 expressions
are evaluated just once.

ves

RPT

(s=e1(,e2},e3) increment 1ist]

evaluate e2 and e3;
F

All expressions are

evaluated just once.

initialize symbols in
increment list; evaluate

all e2 expressions.

|

N

sto

(s
\\"—Tmm

process the repeat block

increment the symbols in
the increment list

-e3)*sign(€2 >0 e

O

s

C

CRPT expression(,increment 1list]

initislize symbols in increment
list; evaluate all e2 expressions;

!
i

v ey

evaluate expression

ra

no —
///;;Z;; expression > EZ:::)

yes

;

process the repeat block

& - - -

All el and e2 expressions
are evaluated just once

This expression is eval-
uated over and over again
and, of course, the values
of the symbols in this
expression may change from
one evaluation to the next.

increment the symbols in the increment
list

The contents of a repeat body may contain any NARP code, in

particular it may contain other repeat statements; the nesting of

repeat statements may go to any level.

5-9

5.3 Introduction to macros

On the simplest level a macro name may be thought of as an
abbreviation or shorthand notation for one or more assembly
language statements. In this respect it is like an opcode in that
an opcode is the name of a machine command and a macro name 1is
the name of a sequence of assembly language statements.

The 940 has an instruction for skipping if the contents of
a specified location are negative, but there is no instruction
for skipping if the accumulator is negative. The instruction
SKA (skip if memory and the accumulator do not compare ones) will
serve when used with a cell whose contents mask off all but the sign

bit. The meaning of SKA when used with such an operand is "skip

if A is positive". Thus a programmer writes
SKA =4BT
BRU NEGCAS NEGATIVE CASE

However, it is more than likely the case that the programmer

wants to skip if the asccumulator is negative, Then he must write

SXA =LB7
ERU *42
BRU POSCAS POSITIVE CASE

Both of these situations are awkward in terms of assembly language
programming.

But we have in effect just developed simple conventions for
doing the operations SKAP and SKAN (skip if accumulator positive
or negative). Define these operations as macros:

SKAP MACRO
SKA =4B7
ENDM

SKAN MACRO
SKA =4B7
BRU *+2
ENDM

Now, more in keeping with the operations he had in mind, the

5~10

Programmer may write

A22 SKAN
BRU POSCAS y

The advantages of being able to use SKAP and SKAN should be
apparent. The amount of code written in the course of a program
is reduced; this in itself tends to reduce errors. A greater
advantage is that SKAP and SKAN are more indicative of the action
that the programmer had in mind, so that programs written in this
way tend to be easier to read. Note, incidentally, that a label
may be used in conjunction with a macro. Labels used in this way
are usually treated like labels on instructions; they are assigned
the current value of the location counter. This will be discussed
in more detail later.

Before discussing more complicated uses of macros, some
additional vocabulary should be established. A macro is an
arbitrsry sequence of assembly language statements together
with a symbolic name. During assembly, the macro is stored in an

area of memory called the string storage. Macros are created

(or, as is more frequently said, defined) by giving a name and the

associated sequence of statements. The name and the beginning

of the sequence of statements are designated by the MACRO directive:
name MACRO

ENDM

The end of the sequence of statements is indicated by the ENDM
directive.

Refer to figure 1. When the assembler encounters a MACRO
directive, switch B is thrown to position 1 so that the macro
is simply copied into the string storage; note that the assembler
does no normal processing but simply copies the source language.
When the ENDM terminating the macro definition is encountered,
switch B is put back to position § and the assembler goes on

processing as usual.
Tt is possible that within a macro definition other definitions

Pigure 1:

SOURCE
LANGUAGE

Information Flow During Macro Processing

!

BINARY
MACHINE
LANGUAGE

AN\

ASSEMBLER

[

= = O O

4
it

H O K+ O

N
Vo

5-11

&
NV

N

STRING
STORAGE

Effect

normal assembly
macro definition

macro expansion

macro definition during

macro expansion

N

C

5-12

may be embedded. The macro defining machinery counts the
occurrences of the MACRO directive and matches them against the
occurrences of ENDM. Thus switch B is actually placed back in
position O only when the ENDM matching the first MACRO is
encountered. Therefore, MACRO and ENDM are opening and closing
brackets around a segment of source language. Structures like

the following are possible:

name 1 MACRO
neme 2 MACRO—
name 3 MACRO

ENDM“]
name 4 MACR

]

ENDM e
name 5 MACRO

ENDM

ENDM :

The utility of this structure will not be discussed here. Use
of this feature of imbedded definitions should in fact be kept
to a minimum since the implementation of this assembler is such
that it uses large amounts of string storage in this case. What
is important, however, is an understanding of when the various
macros are defined. In particular, when name 1 is being defined,
name 2, 3, etc., are not defined; they are merely copied into
string storage. Name2, for example, will not be defined until
namel is expanded. (It should be noted that macros, like
opcodes, may be redefined.)

The use of a macro name in the opcode field of a statement

is referred to as a call. The assembler, upon encountering a macro

call, moves switch A to position 1 (see figure 1). Input to the

assembler from the original source file temporarily stops and comes

fnstead from string storage. During this period the macro is said

to be undergoing expandion. It is clear that a macro must be
defined before it is called.

An expanding macro may include other macro calls, and these,
in turn, may call still others. In fact, macros may even call
themselves; this is called recursion. Examples of the recursive
use of macros are given later. When & new macro expansion begins

L4

O

C

5-13

within a macro expansion, information about the progress of

the current expansion is saved. Successive macro calls cause
similer information to be saved. At the end of each expansion
the information about each previous expansion is restored. When
the final expansion terminates, switch A is placed back in
position O, and input is again taken from the source file.

Now let us carry our example one step further. One might
argue that the action of skipping is itself awkward. It might
be preferable to write macros BRAP and BRAN (branch to specified
location if contents of accumulator are positive or negative).
How is one to do this? The location to which the branch should
go 1s not known when the macro is defined, in fact, different
locations will be used from call to call. The macro processor,
therefore, must enable the programmer to provide some of the
information for the macro expansion at call time. This is done

by permitting dummy arguments in macro definitions to be replaced

by arguments (i.e., arbitrary substrings) supplied st call time.
Fach dummy argument is referred to in the macro definition by a
subscripted symbol. This symbol or dummy name is given in the
operand field of the MACRO directive.

Let us define the macro BRAP:

BRAP MACRO LABEL
SKAN
BRU IABEL(1)
ENDM

When called by the statement 'BRAP POSCAS, the macro will

expand to
SKA =4B7
BRU *42
BRU POSCAS

Note that BRAP was defined in terms of another macro, SKAN. Also
note that as defined BRAP was intended to take only one argument;

other macros may use more than one argument.

The macro CBE (compare and branch if equal) takes two

arguments. The first argument is the location of a cell to be

compared for equality with the accumulator; the second is a

branch location in case of equality. The definition is

CBE MACRO D
SKE D(1)
BRU *42
BRU D(2)
ENDM

When CBE is called by the statement
CBE =218, EQLOC

the statements generated will be

SKE =218
BRU *42
BRU EQLOC

Note that in the macro call, the arguments are separated by

comma.s .
The following sections describe macro definitions and

calls in more detail.

5-15

5.4 MACRO, IMACRO, and ENDM Macro definition

The form of a macro definition is:
MACRO

name or [dummy!{ , generated, expression]] [comment]
IMACRO

where name, generated, and dummy are all symbols, and expression

1s an expression.

IMACRO is completely equivalent to MACRO except that if

name is defined as a macro with MACRO the construct

label name argunents

will automatically cause label +to be defined as the current
value of the location counter, whereas if name were defined
with IMACRO this automatic definition of label would not

occur.

Some details of the definition

If generated appears, it should not be the same symbol
as dummy, and neither of them should be "MACRO", "IMACRO", or
"ENDM. "

If name is already defined as an opcode, the old definition
is completely replaced by the new.

If the MACRO (or IMACRO) directive has no operand, then
name is defined as an opcode that takes no operands. Otherwise,
name becomes an opcode that may or may not take an operand.

Whole-line comments (lines beginning with *) in the macro
body are not saved in string storage as part of the macro
definition, but comments following instructions are. Thus, it
behooves the programmer to avoid the latter, as they eat

string storage.

|
|

5-16

When a macro body is placed in string storage, superfluous
blanks are removed. Thus, any contiguous string of blanks is

compressed to one blank with the following exceptions:

a) Blanks enclosed in single quotes (') are not compressed.

b} Blanks enclosed in double gquotes (") are not compressed.

¢) Blanks enclosed in parentheses are not compressed. In
this use, the nesting of parentheses is taken into
account, but a parenthesis between single or double
gquotes is not considered as part of the nesting
structure.
In most cases the programmer need not worry about these
conventions, although there are times when he may get pinched.

For example, if
Asc %Ay 2B%
appears in a macro definition, it will be expanded as
Qg:} ASC TA,B%
To avoid such problems use

ASC 'A,,,B'

A

5-17

5.4.1 Dummy arguments

The dummy argument specified as an operand of the MACRO
directive may appear anywhere in the macro body, followed by a
subseript. At call time the subscript is evaluated and its value
is used to select the appropriate argument supplied in the call.
Before describing the various kinds of dummy arguments a few
conventions are needed:

a) In the following, "argument" will refer to the character

string as given in the macro call after possible enclosing

parentheses have been removed (see section 5.6 for the

format of argument strings).

b) The number of arguments supplied by the call is n (n>0).

¢) The number of characters in argument ei is n(ei).

d) The structure ei for i an integer stands for an expression.
(However, its value stands for some argument usually, so
ei will be used somewhat ambiguously to stand for an
expression or the value of an expression.) The first
argument in a call is numbered 1.

e) The dummy argument is assumed to be "D".

With the above in mind, we consider the three forms of dummy

arguments:

1) D{el)

This expands to argument el (which may be the null string), where
0<el<n. (If el = O then D(el) expands to the label field of
th; macro call; see section 5.6.)

Special notation: p{) = p(1)

2} Dp(el,e2)

If el > e2 then this expands to the null string (range of values
of el and e2 is arbitrary), otherwise, this expands to argument
el through e2, where 0 < el < e2 < n, with each argument enclosed
in parentheses and a comma inserted between each argument. For
example, D(3,3) = (D(3)).
Special notation: D(,) = D(1,n)

D(,el) = D(1,el)

D(el,) = D(el,n)

>-18

3) D(el$e2,e3)
In all cases, 0 < el < n must be true. If e2 > e3 then this
expands to the null string (range of values of e2 and e3 is 5,
arbitrary), otherwise, it expands to characters e2 through e3 !
of argument el, counting the first character of an argument as
character 1. If either e2 or e3 lies outside the argument, then
the nearest boundary is chosen. To be more precise, before using
e2 and e3 to select the piece of argument el that is desired, the

following transformation is made:

el:
e2:

max (1,e2); e3:= max (1,e3);
min (n(el), e2); e3:= min (n(el),e3);

If argument el is the null string, then the dummy argument expands
to the null string regardless of the values of e2 and e3.
Special notations:

D(ei$,) = D(el$l, n(el)) = D(el)

D(el$,e2) = D(el$l,e2)

D(el$e2,) = D(el$e2,n(el))

D(el$e2) = D{elde2,e2)

D(el$) = D(el$1l) = D(eld1,1)

]

In any of the six forms mentioned above, el may be missing;

if so, 1 is assumed. E.g., D($) = D(1$1,1).
A general rule which will help in remembering what the special
notations mean is the following: ''Whenever an expression is
missing from a form, the value 1 is assumed unless the expression
is missing from a place where an upper bound is expected (as in
D(3,) or D(3$2,), in which case the largest 'reasonable' value is
assumed." .

In any of the above three cases, if an expression which
designates an argument is out of range, then an error message is

typed and argument O is taken.

-19

Ut

Following is an example of the various forms of dummy

arguments:

Macro definition:

XAMPLE MACRO D 2
D(2) D() ~~ D(0)
ASC 'D(2,4)!
TEXT "D(L,)" D(-3,-k)
ASC "D(1$3,4)"
ASC 'D(2$-3,18)"
ENDM

Macro call:

BETA XAMPLE ALPHA,ADD, GAMMA , DELTA

Macro expansion:

BETA ADD ALPHA BETA
AsC "(canpa), (DELTA) !
TEXT '(DELTA)' NULL STRING
ASC 'PH!

C\ ASC 'ADD!

(N

NULL STRING

5-20

5.4.2 Generated symbols

A macro should not, of course, have in its definition an
instruction having a lebal. Successive calls of the macro would
produce s multiply-defined symbol. Sometimes, however, it is
convenient to put a label on an instruction within a macro.
There are at least two ways of doing this. The first involves
transmitting the label as a macro argument when it is called.
This is most reasonable in meny cases; it ic in fact often
desirable so that the orogrammer can control the label being
defined and can refer to it elsewhere in the program.

However, situvations do arise in which the label is used
purely for reasons local to the macro and will not be referred
to elgewhere. In cases like this it is desirable to allow for
the automatic creation of labels so that the programmer is freed
from worrying about this tack. This may be done by means of the

generated symbol.

A generated symbol name may be declared when a macro is

defined, specifying the name and the meximum number of generated
symbols which will be encountered during an expansion. These

two items follow the dumny symbol name given in the MACRO directive
(as shown in section 5.4 above) if the programmer withes to use

generated symbols in a macro. For example,

MUMBLE MACRO D,G,4
< macro body >
ENDM

might contain references to G(1), G(2), G(3), and G(4), these
being individual generated symbols.

With regard to generated symbols the macro expansion machinery
operates in the following fashion: A generated symbol base value
for each macro is initialized to zero at the beginning of assembly.
As each generated symbol is encountered, the expression constituting
its subscript is evaluated. This value is added to the base
value, and the sum is produced as a string of digits concatenated
to the generated symbol name; the first digit is always O to
reduce the likelihood of the generated symbol being identical to

5-21

& normal symbol defined elsewhere by the programmer. Thus, the
first time MUMBLE is called, G(2) will be expanded as C#2, G(4)
as GP4, ete.

At the end of a macro expansion, the generatcd symbol base
value is incremented by the amount designated by the expression
following the generated symbol name in the MACRO directive. This
is 4 in the case of MUMBLE. Thus, the second call of MUMBLE will
produce in place of G(2), GP6, the third call will produce GF19,
etc. It should be clear that the generated symbol name should
be kept as short as possible.

The expression in the macro head (call it m) must have a,
value in the range [1,1023]. A generated symbol subscript must

have a value in the range [1,m].

R

e

5-22

5.4.3 Concatenation

Occasionally, it is desirable to have a dummy argument follow
immediately after an alphsnumeric character, for example, to
have D(1) follow just after ALPHA. But then the assembler
would not recognize the dummy because it would see ALPHAD(1)
instead of D(1). To get around this problem the concatenation
symbol '.&' is introduced. Its sole purpose is to separate a
dummy argunment (or conceivably a generated symbol) from a preceding
alphanumeric character during macro definition. Thus, the example
becomes ALPHA.&D(1). The concatenation symbol is not stored in
string storage so it does not appear during expansion.

As an example, say that we wish to define a macro STORE,
and suppose we have established the convention that certain
temporary storage cells begin with the letters A, B, or X
depending on what register is saved there. The definition is:

STORE MACRO D
ST.80($) D(1)
ENDM

If called by the statements
STORE B17
STORE Xul

the macro will expand as

STB B17
STX Xhh

The concatenation symbol may appear anywhere in a macro
definition, but it is only necessary in the case described above.
If one macro is defined within another, any concatenation symbols

within the inner macro will not be removed during the definition

of the enclosing macro. ,

5-23

5.5.4% Conversion of a value to a dizit string

As an adjunct to the automatic generation of symbols (or
for any other purposes for which it may be suited) a capability
is provided in the assembler's macro expansion machinery for
conversion of the value of an expression at call time to a
string of decimal digits. The construct

($expression)
will be replaced by a string of digits equal to the value of
the expression. For example, if X=5 then

AB($2%X+1)
will be transformed into

AB11
If the value of the expression is zero then the digit string is
'0'; if it is negative then the digit string is preceded by a
minug siga.

This conversion scheme can also be used inside repeat blocks;

for example

RPT (I=1,10)
TEMP($I) BSS 1
ENDR

creates 10 cells labelled TEMPL through TEMPLO.

5-24

5.4.5 A note on subscripts

The expressions used as subscripts for dummy arguments
and generated symbols, as well as the expressions used in the
conversion to a digit string must be absolute. Any undefined
sylrtbols appearing in these expressions are treated as if they
were defined with the value -1. These expressions may themselves
contain dummy arguments, genecrated symbols, and ($...), so
constructs like ($4+D(I*D(3))) are possible.

5-25

5.5 NARG and NCHR Number of arguments and number of characters

Macros are more useful if the number of arguments supplied
at call time is not fixed. The precise meaning of a macro (and
indeed, the result of its expansion) may depend on the number or
arrangement of its arguments. In order to permit this, the
macro undergoing expansion must be able to determine at call time
the number of arguments supplied. The NARG directive makes this
possible.

NARG functions like EQU except that no expression is used
with it. Its form is

[$]symbol NARG [comment]
The function of the directive is to eguate the value of the symbol
to the nmunber of arguments supplied to the macro currently
undergoing expansion. The symbol can then be used by itself or
in expressions for any purpose. NARG may appear in any macro,
even one which has no dummy argument (and thus never has any
arguments at call time); it is an error for NARG to appear outside
a macro.

It is also useful to be able to determine at call time the
number of characteré in an argument. NCHR functions by equating
the symbol in its label field to the number of characters in its
operand field. Its form is

[$]1symbol NCHR [character string [comment]]
where "character string” has exactly the same form as an argument
supplied for a macro call, i.e., if it involves blanks, commas,
or semi-colons it should be enclosed in parentheses (see section
5.6). NCHR can appear anywhere, both inside and outside macros,

but it is most useful in macros for determining the length of

arguments.

Fxamples:
A NCHR ABCDFEF A:=6
B NCHR (,,XYZ,,) B:=7
C NCHR (1) Ce=?

O

5-26

5.6 Macro calls

The format of a macro call is:
[[$]1abel] macroname [argstring] [comment]

Such a call causes the macro whose name appears in the
opcode field to be expanded, with the dummy arguments in the
macro body replaced by the actual arguments of the argstring.

The label field is always transmitted as argument O, so
that D(el),where el has value 0, is always legal inside a macro.
An occurrence of D{el), where el=0, will be replaced by the
label field. If the label field is empty, then D(el) expands
to the null string. At most seven characters will be transmitted
this way: the first six characters of the symbol in the label
field, preceded by '$' if the label field begins with '$"'.

If the user wishes to transmit an argument to a macro in

qt;\ the label field of the macro call, but does not wish to have
’ the symbol in this field defined, he should define the macro
with IMACRO rather than MACRO. (See section 5.4) An example:

NT TMACRO D
RPT D(1)
DATA D(2)
ENDR
p(0) DATA -D(1)
ENDM
when called by:
DTE NT 4,487
expands as:
DATA L4B7
DATA 4B7
DATA 4B7
DATA 4B7
DTE DATA -4
(T“\ Notice that this would have caused a doubly-defined symbol

error had MACRO been used rather than IMACRO.

C

5-27

A macro call may or may not have an arg string (see section
5.4). If an arg string is present, it may contain any number
of arguments, in fact, more than are referred to by the macro.
Before describing an arg string, the following should be
noted: blanks, commas, semi-colons, and parentheses that are
enclosed in single or double quotes are treated exactly like
ordinery characters enclosed in quotes; they do not serve as
terminators, separators, delimiters, or the like. In effect,
when the argument collector in NARP is collecting arguments
for a macro call, the occurrence of a quote causes it to stop
looking for special characters except for a matching quote (and,
of course, carriage return, which is an absolute terminator).
A single quote enclosed in double quotes is not a special
character and vice versa. Thus, when a blank, comma, semi-colon,
or parenthesis is referred to in the following, it is under-
stood that it is not enclosed in quotes.

An arg string for a macro call has the following format:
<arg>,<arg>,...,<arg> <terminator>

where a termirnator is a blank, semi-colon, or carriage return.
There are three forms of <arg>:
l. <arg> may be the null string.
If the first character of <arg> is not a left paren-
thesis then <arg> is a string of characters not con-
taining blank, comma, semi-colon, or carriage return
(remember that blanks, commas, and semi-colons may
appear in <arg> if they are enclosed in quotes).
3. If the first character of <arg> is a left parenthesis
the <arg> does not terminate until a blank, comma,
or semi-colon ié encountered after the right parenthesis
which matches the initial left parenthesis ("matches”
means that all left and right parentheses in the
argument are noted and paired off with each other so
that a nested parentheses structure is possible).

Of course, a carriage return at any point immediately

P

528

terminates <arg>. Again, remember that blanks, commas,
semi-colons, and parentheses enclosed in quotes are

ignored when <arg> is being delimited. The initial N
left parenthesis and its matching right parenthesis
(which need not be the last character in <arg>) are

removed before <arg> is transmitted to the macro.

Examples:
AMAC (,535,),, '"HOUSE, ,ROGER', (AB")")
D(1) = .54
D{2) = null string
D(3) = 'HOUSE,,ROGER'
D{4) = AB™)"

5.7 Examples of conditioral assembly and macros

1. Tt is desired to have a Ppair of macros SAVE and RESTOR
for saving and restoring active registers at the beginning and
end of subroutines. These macros should take a variable number
of arguments so that, for example, one can write

SAVE A, SUBRS
RESTOR A,B,X, SUBRS

to generate the code

STA SUBRSA
LDA SUBRSA
LDB SUBRSB
LDX SUBRSX

To this end we first define a macro MOVE which is called
by the same arguments delivered to SAVE and RESTOR, but with
the string 'ST' or 'LD' appended.

MOVE MACRO D
X NARG
RPT (Yy=2,%-1)
D{(1)p(Y) D(X)p(Y)
ENDR
ENDM

Now SAVE and RESTOR can be defined as

SAVE MACRO D
MOVE sT,D(,)

ENDM

5-29

RESTOR MACRO D

MOVE 1D,D{,)
ENDM
‘J
2. Many programners use Tlags, memory cells that are "

used as binary indicators. The instruction SKN (skip if memory
negative) makes it easy to test these flegs if the corvention is
used that a flag is set (true) if it coniteins -1 and reset (false)
if it contains §. We want to define two macros, SET and RESET
to manipulate these flags; furthermore, it is desirable to
deliver at call time the name of an active register which will
be used for the action. Calls of the macros will look like

SET A,FLGL,FLG2,FLG3

RESET X, FLGR7,FLG12

As in the previous example we make use of an intermediate

macro, STORE, which takes the same arguments as SET and RESET.

STORE MACRO D
X NARG
RPT (v=2,X%)
ST.&D(1) D(Y)
ENDR
ENDM

Now SET and RESET are defined as

SET MACRO D
LD.&D(1) =-1
STORE n(,)
ENDM

RESET MACRO D
CL.&D(1)
STORE D(,)
ENDM

3. The following macro, MOVE, takes any number of pairs
of arguments; the first argument of each pair is moved to the
second, but an argument may itself be a pair of arguments, which
may themselves be pairs of arguments, etc. MOVE extracts pairs of

argument structures and transmits them to a second macro MOVEL.

MOVE MACRO D

X NARG @
RPT (v=1,2,%)
VOVEL D(Y),D(Y+1)
ENDR

ENDM

~

5-30

The main work is done in MOVELl which calls itself recursively

until it comes up with a single pair of arguments.

MOVEL
(1)
a(2)

MACRO
NARG
EQU
IF
IDA
STA
ELSE
RPT
MOVEL
ENDR
ENDF
ENDM

When MOVE is called by

the code generated

When called by

the code generated i

When called by

the code generated

MOVE

is

LDA
STA

MOVE

LDA
STA
LDA
STA

MOVE

IDA
STA
LDA
STA

D,C,2
g(1)=2
D{1)
D(2)

G(1)/2, (a(2)=c(2)+1)
D(G(2)),p(a(2)+a(1)/2)

A,B,C,D

O Qw>

(a4,8),(c,D)

Ut Qe

And when called by

5-31

MOVE ((a,8), (c,D)), ({E,7), (G,H))

the code generated is

IDA
STA
LDA
STA
IDA
STA
LDA
STA

HUQ QW E

It is instructive to trace the last exsmple by hand to see how

the recursive calls of MOVEl work.

to the reader.

This is an exercise left

6.0 Overstin~y NARP

6-1

6.1 Error conmente on stotements

Wnen NARP encounters a statement which it deems incoapre-

hensible or illegcl, it lists the siotewent in error-format

(corresponds to all listing format booleaons being set) and then

on the following line(s) lists all error commcnts pertaining

to the statement.

Most error-cosments are as intelligible as the situation

(and NARP's strangeness) allows. Some of the more common

and/or more cbscure ones are listed and commented upon below:

c 7

BAD TERMINATION

1C OVERFLOW

DIRECTIVE OUTSIDE BODY
(symb) REDEFINED
(symb) OFPCODE?

UNDEFINED EXPRESSION

The character C caught NARP unawares

Premature termination, or garbage (like
extranecus commas) where tne statement
should end.

The velue of the location counter got
out of the range [0, 37777Bl.

And ENDF, ENDR, or ENDM without a
matching IF, RPT, or MACRO.

"symb" was defined (as a label) previous
to this definition of it.

"symb" was used as an opcode and is not
in the opcode table.

An undefined symbol occurs in an
expression which should be defined.

6.2 Other error comments

If a fixed-length table ever flows, a message (name)
OVERFLOW is printed (after a listing of the offending statement
in error-formsat), followed by ¥¥¥¥¥ASSEMBLY DEAD*¥¥¥¥ and

termination of one assembly.

The nsme may be:
MAIN TABLE

STRING STORAGE

Contains opcodes, literals, symbols
(both undefined and defined).

Contains MACRO definitions, macro calls
and RPT exprecions.

EXPRESSION TABLE

INPUT POINTER STACK

CHARACTER STACK

OFERAND STACK

PILE

6-2

Contains post-fix Polish representations
of expressions containing undefined
symbols, until all the symbols in the
expression are defined.

Contains cone entry for each embedded
change of input-source.

Helds the characters in a symbol while
they are being collected.

Holds operands in the processing of
expressicns.

Space for temporaries in recursive calls
of the expression eater.

In addition, the following comments may appear:

TRAP AT XXX
I-O0 ERROR

NO END DIRECTIVE

Error committed by NARP at location XXOXX;
a3sembly terminstes.

Error in input or cutput of informetion,
assembly terminates.

An end-of-file encountered before an
END directive; assembly will terminate
as though an END directive was given
(i.e., normally).

O

A A58 AN

SeALAa L)

6-3

6.3 Starting an assembly

Assuming that the user has entered the time-sharing system,
NARP is called by hitting the rubout button until the exec
answers (by typing '¢') and then typing 'NARP' followed by a dot.
Control is then turned over to NARP and a source file must be
specified; other information may alsc be supplied, if desired.
The general format is:

default convention

ENARP.

SOURCE FILE: file name none
OBJECT FILE: file nane none
[TEXT FILE: file name] TELETYPE

Each line sbove is either terminated by a dot or a sgemi-colon.
A dot causes assembly to begin immediately (except after the
source file name). The defasult conventions are used for all
those options not explicitly specified. A semi-colon causes a
carriage return to be typed, and the specification of some
option is expected.
The various options are discussed in more detaill below:
SOURCE FILE: As soon as NARP is started this line is typed and
the user must specify a file containing a program
to be assembled. When he terminates the name,
NARP responds with 'OBJECT FILE:' on the next line.
OBJECT FILE: The file name given specifies where the binary
output from the program should go. If the file
name is terminated by a semi-colon, then a
carrisge return is typed and NARP waits for
one of the following options to be specified.
TEXT FILE: The file name given specifies where the listing
of the source program and of the error messages

should go. This option may be specified only once.

A-1

! Appendix A: List of all pre-defined cpcodes and pre-defined symbols

The following table is a listing of an initilalization program
used to initialize the opcode table and symbol table of NARP,
It will be noted that in some cases the OPD directive has four
operands instead of the usual three; the fourth operand specifies

the type (directive, macro, or instruction) of the opcode being

defined. It is only possible toc use four operands for OPD when
NARP i:c being initialized, and conce the initialization program

has been assembled, OPD will only accept three operands.

T

* NARP INITIALIZATION PROGRAM, (21 NOV 19€66)
* OPD SYNTAX AND STMANTICS:

* <SYMZQOL> OPD <VALUE>[, <CP SIT>{ ,<SVIFTK>[,<TYPT>11]
¥ <OPSIT> : A= OPFRAND NPTIONAL

* I = NO OPFRAND

* 2 = OPFRAND HEOQUIRED

* <SHIFTK> ¢ A - NORMAL INSTRUCTION

* I = SHIFT INSTRUCTION

* <TYPE> : A - INSTRUCTION

* I - DIRECTIVE

* 2 = MACRO

* INSTRUCTION DEFINITIONS:

LDa opPD ATCAANAMR , 2 LOAD &

STA nPD B35%B93 w.r STORE A

LNR OPD ZISABAANR ;2 LOAD R

STE OPD ABEBARANOR , 2 STORE B

LDX nPD ATIBAOFAF 4 2 LOAD X

STX oPD JwQ&&Q&gmwm STORE X

EAX apn ATTBRANIR 2 COPY EFFECTIVE ADDRESS INTC X
XA npPD AGLADNATR , 2 FXCHANGE M AND 4

ADD nPH RSSTRAANE , 2 ADD M TO A

ARC n0pn ASTADGATE 42 ADD WITH CARFY

ADN npn NEINGCBIL ;2 ADD A TH M

MIN APT PEVBRANTE 2 MEMORY INCREMFNT

SUF apn DSANDNDAE 2 SUETRACT ™M FROM A

suc OPD GS6A3727A0F 4 2 SUBTRACT WITH CARRY

MUL OPD BELAAANTR , 2 MULTIPLY

HARY oPD PESAAAAAR , 2 DIVIDE

ETP OPD DLARAAAANR, 2 EXTRACT (AND)

MRT aPD A EARAAD 2 MEQGE (OR)

FOkK npPod MTABABIR 2 FXCLUSIVE nR

RCH OPD A4E0NDADR , 2 REGISTFR CHANGE

CLA arPD ALEARAAIE 1 CLEAR A

CLR oPD N46A7AN2E , | CLEAR R

CLAR PD B4EAA0A3E , CLEAR AR

CL¥ npD 2LEPTANIR , CLEAR X

CLFAR "PD 48RRI, CLEAR A, B, AND X

CAF nen QLEARRBLE , COPY A INTO B

C=A aPn NACRANY A, | COPY B INTN A

XAR npn Aa6227%1 40 | FXCHANGF A AND R

BAC apn AaGAARL2E 4 | COPY & INTO A, CLFARING K
ABC oPD ALERRAGSR, | COPY A INTO B, CL¥ARING &
CXe nPd MABAG2 AR, | COPY X INTN A

Cx
XXA
CRX

* CXB
XXE
STF
Lh
XT"
CNA
AXC

PRU
BRX
B M
PRE
BRI

SKS
SKE
SKG
SKR
SKM
SKN
SKA
SKr

(“‘(K",

LSH
RCY
LFSH
LSH
LCY
NOD

KLT
Zro
NOP
EXU

EPT I
EPT2
BPT3
BRPT 4

ROV
REN
NVT
01"

FIR
DIR
OALR
\\w’ FT
10T

OPD
JPN
0PN
OPD
opn
obn
OPD
apPh
OPD
oPD

OPD
apn
apPD
aPn
OHpPn

npPo
nen
apPD
apPn
apPD
nPD
OPD
nPD
aPD

nen
NPD
NPD
OPD
PD
PD

oPD
oPD
IPD
OPD

aPD
OPD
NPD
OPD

apD
OPD
OPD
0Pl

9PD
0PD
APD
0P
0PD

LSRR LAR

!
BEEEAGTOR |
B4SHABRPT, |
AL SR %470 |
BLBANNGUE |
B46%312.0F , |
ALSCBLAYR, |
B4ENNT ST, |
RARAL ABTR |)
NaRAFAALR) |

v W % @ W e v

AN AAGAOR, 2
A4\ BGABTE , 2
BLRAABOGE 2
25100AA%E , 2
A LADOROR, 2

BAPANDAOR
ASBRAAATR
273 AAAARE
AEATAAA R
AT, 2
H535AAAAR O
ATPAARADR , 2
452 AABAAE , 2
BT4NADAAS , 2

NN NN

9
9
$ -
9

BESADANPE , 2, 1
N662B7AAR, 2,

ACE24700R, 2,
ZET08AA0, 2,
9672@?%78,2,1
ASTIABBMB, 2,1

2TADAGAAR, A
AGARDEAIR , A
N2CADBAAR , A
P23 30ARIR, 2

BLB2D 4O , |
PLT2B297R , |
¢4@?ﬂn¢@9 1

LA2PALPR , |

FRPANAAIE G 1
BR800 103, |
N22381316,1
B22ARV A8 , 1

BLLBBAR , |
BH22BARAR , |
AB220H205 | |
ALCLARDOR , |
A4A2BONRLR , |

1
!

COPY A INTO X <i>

EXCHANGE X AND A

COPY B INTN X

COPY X INTO K

FXCHANGE X AND B g
STNARE EXPONENT N
LOAD FXPONERT

EXCHANGCE FXYPONTNTS

COPY NEGATIVE OF A INTO A

COPY A TO X, CLEAR A

FRANCH UNCONDITIONALLY

INCREMENT INDEY¥ AND FRANCH

MARY PLACE AND FRANCF

RETURN RRANCH

PRANCH AND RETUPN FPOM INTERRUPT

SKIP IF SIGWAL NOT SET

SKIP IF A FQUALS M

SKIP IF A GREATER THAN M

REDUCE M, SKIP IF NEGATIVF

SKIP IF A EQUALS M ON B MASK

SKIP IF M NEGATIVE

SKIP IF M AND A DO NOT COMPARE NNEQ

SKIP IF ™ AND B DO NOT COMPARE ONES

DIFFERENCE EXPONENTS AND SKIP a

RIGHT SHIFT AR

RIGHT CYCLF AB

LOGICAL RIGHT SHIFT ARk
LEFT SPIFT AB

LEFT CYCLY AB

NORMALIZE AND DECREMENT X

HALT

ZERO

NO OPERATION
EXECUTE

BREAKPNINT TEST |
EREAKPOINT TEST 2
BREAKPOINT TEST 3
BREAKPOINT TEST 4

RESET QVERFLOW

RFCORD EXPORENT QVERFLOW
OVERFLOW TEST AND RESFT
OVERFLOW TEST OMNLY

ENARLE INTFRRUPTS
DISARLE INTERRUPTS

ARM /DISARM INTERRUPTS
INTERRUPT ENARLED TEST
INTERKUPT DISARLED TFST

O

e g e et s T

S Y

(

<

ALCYW
RERRY
ASCW
TOPYW

CATW
CETw
CzTH
CITw

EAD
MIW
W
PIN
POT
E0M
BETW
CPTW

RIN
PrS
CI10
CTRL
"RI
DRO
Duy
Do
£X8
FaD
oV
-Fmp
FSR
GCD
GCI
IsC
187
LAS
LDP
N&T
SAS
SERM
SRER
cIC
SKSF
SKSG
a7l
STN
STP
TCI
TCcn
»CD
~¥CH
[A,CI

oPD
oPD
aPD

oPD

oPD
apPn
oPD
OPD

OPD
oPn
oPD
aPD
oPD
nPD
OPD
nPD

OpP>
NPH
NPD
nePD
oPh
aPe
OPD
OPD
npPn
oPD
nEDR
aPD
OPD
apPo
OPD
OPD
OPD
nePn
oPD
P
gPD
apPD
OPD
orPn
oPm
oPD

npn .

neo
arPD
oPD
pPD
npn
npo
w0

AI2SAGATE , |
IROAAAATR , |
242120798, 1
AAD L 4B, |

2404140403, |
ALGL 1 AG0R, |
N67 122372, 1
PLA1AAGOR , |

AAEABANBE , 2
FN2AARRAR, 2
AZ2HAARTE) 2
ARIABANGR 2
ALZUFARAR, 2
AADAEACIR, 2
GanP 7R AR |
AL LAABR, |

5762ARAGE, 2
ST34ACAR, 2
5612830, 2
STRAYCATR , 2
S 42ARARGR , 2
S43AGAROB, 2
S 443BFRAR, 2
S 45 3ANAAN, 2
55200ARAL, 2
556342308, 2
5530720000 , 2
S54GFAGNR , 2
55500 ABAR , 2
537003075, 2
565037008 , 2
SH4LBABAMR , 2
55A0AGN0R , 2
546070005, 2
5667 AAIR , 2
551073098 , 2
54700 3R0L , 2
5TAGRGHIR, 2
25140890 , 2
54GPGAATR, 2
583 JAAANR , 2
S6200AH7R , 2
53 63AAANE , 2
5340009 % , 2
S6TRFAGN , 2
ST4ARARGR , 2
575ARAATE , 2
5353303008 , 2
564BBARNE , 2
55730 AGOK , 2

ALFRT CHANNEL W

DISCONNECT CHARNEFL W

ALERT TO STORE ADDRESS IN CHANNEL W
TERMINATE OUTPUT ON CHANNEL W

CHANNFL ACTIVE TFST
CHANNEL W ERROR TEST
CHANNFL W COUNT TEST
CHANNEL W INTER-RECORD TEST

ENERGIZE OUTPUT D

M OINTO W BUFFER WKEN EWMPTY
WORUFFER INTO M O WHEMN FULL
PARALLFL INPUT

PAFALLFL QUTPUT

FNERGIZE OUTPUT ™

W RUFFER FRROR TEST

W BUFFFF READY TEST

ELOCK 1/0

PRANCH TO SYSTEN

CHARACTER I1/0

CONTROL

DRUM BLOCK INPUT

DRUM BLOCK OUTPUT

DRUM WORD 18PUT

DRUM WORD QUTPHT

FXECUTE INSTRUCTION IN SYSTEM MODE
FLOATING ADD

FLOATING DIVIDE

FLOATING MULTIPLY

FLOATING SURTRACT

GET CHARACTER AND DECREMENT
GET CHARACTER AND INCREMENT
IMTERNAL TO STRING CONV, (FLOATING OUTPUD
INPUT FROM SPFCIFIED TELETYPE
LOAD FFOM SECONDARY MEMORY
LOAD POINTER (AR)

OUTPUT TO SPFCIFIFD TELETYPF
STORE IN SECONDARY MEMORY
SYSTEM RRMN

SYSTEM EBRR

STRING TO INTERNAL CONV. (FLOATING INPUT)
SKIP IF STRINGS EQUAL

SKIP IF STRING GREFATER
SIMULATE TELFTYPE INPUT

STEAL TTY OUTPUT

STORE POINTYR (AR)

TELETYPE CHARACTEP INPUT
TELETYPF CHARACTER OUTPUT
WRITE CHARACTER AND DECREMENT
WRITE CHARACTER

WRITE CHARACTEF AND INCREMENT

o
NI

% DIRECTIVE DEFINITION

ASC
BFS
RSES
corPy
CFPT
PaTA

LIST
MACRO
NARG
NCHK
MALIST
oCT
POPD
RELOKG
RETREL
RPT
TEXT
LMACRD

REM

FRGTOP

eZFERE e

:1C:

OPD

opn
“nNon

nPD
0PD
NPD
P2
PP
npD
PD
0PD
NPD
0PD
NPD
NPD
OPD
"PD
OPD
OPD
0PD
OPD
0PD
OPD
OPD
NPD
0PD
OPD
OPD
OPD
0PD
nPD
0PD
OPD
OPD
PR
NpD

EQu

=AU
FRGT

FREEZE

FAND

58ARTANAG , 2

’Jr)

% e % a ¢

e v v v e

LW AR DD

e W e B
[CSEINS I

&1\3—*'—-”"'-‘{\’)“""“—(\7?05\)?\)?3.\7

tZZRO e
tZFR02,

LC¢?

WORD I1/0

ASCII STRING

LOCK w&D SYMROL
BLOCK START SYYMEOL
FEGISTFF CHANGF
CONDITIONAL RFPEFAT
DATA WwORD

S=T MUIMPER RADIX TO 12
DELETE SymPOL

TLSE

TLSE IF

END OF PROGRAM

END OIF

END MACRO

END REPEAT

FQUATE

EXTEPNAL

FREEZE TABLES

FORGET SYMROL
IDENTIFICATION SYMBOL

”‘ O
UTPUT LABEL AS LIBRARY WYMBOL
TURN ON LISTING

MACRO DEFINITION

NUMBEF OF ARGUMENTS

NUMBER OF CHARACTERS

TURN OFF LISTING

SET MUMBER RADIX TO 8§

POP DEFINITION

RELATIVE ORIGIN

RETRIEVE ORIGIN

REPEAT
STRING (FOUR CHAFRACTERS PER WORD)
ALTERNATIVE MACRO DEFN

PRINT REMARK ON TEXT FILE
FORGET SELECTED OPCODES

LAST LINE OF NARP INITIALIZATION PKROCRAM,

O

e

o~ i et e e i gt i i

Avmendix B:

Talkle of ASCII chorac

ter set for the SDS 94O

octal value character octal value charocter octal value character
0 30 60 P .
1 ! 31 61 Q
2 " 32 : 62 R
3 # 33 ; 63 S
L 3 3L < 6k T
5 % » = 65 U
6 & 36 > 66 - v
7 ! 37 ? 67 W
10 (10 @ 70 X
11) L1 A 71 Y
12 * Lo B 72 zZ
13 + 43 c 73 {
1k , LY D 74 \
B 45 E ™]
16 . 46 F 76 1
17 / b G 77 -
20 ¢ 50 - H 135 MULTIPLE BILANKS
21 1 51 I 137 END-OF-FILE
22 2 52 J 1k END-OF-TAPE
23 3 53 K 147 BELL
2L L 54 L 152 LF
2 5 55 M 54 START NEW PACGE
26 6 56 N 155 CR
27 7 57 0

