
REFERENCE MANUAL FOR

NARP, AN ASSEMBm FOR THE SDS 940

Roger House

Dana Angluin
Laurence P. Baker

Document No. R-32

Issued January 3, 1968
Revised November 21, 1968

Office of Secretary of Defense

Advanced Research Projects Agency

Washington, D . C. 2 0 3 5

TABU OF CONTENTS

2.0 Introduction .
1.1 Pseudo-history of assembly languages
1.2 Assembly languages: Some basic constituents and

concepts .
2.0 Basic constituents of NARP

2.1 Character s e t
2.2 Statements and format
2.3 Symbols, numbers. and s t r ing constants
2.4 Symbol definit ions
2.5 Expressions and l i t e r a l s
2.6 Opcode class i f i ca t ion

3.0 Instructions .
4.0 Directives .

4.1 ASC Generate tex t (3 characters per word)
4.2 BES Block ending symbol
4.3 BSS Block s ta r t ing symbol
4.4 COPY Mnemonic for RCH
4.5 DATA Generate data
4.6 DEC Interpret integers as decimal
4.7 DELSYM Do not output any symbols
4.8 END End of assembly

4.10 EXT Define a symbol as external

4.12 FRGT Do not output a specific symbol
4.15 FRGTOP Forget selected opcodes

4.13 DENT Identification of a package
4.13 LIBEXT Specify l ib rary symbol

4.14 LIST Set l i s t i n g controls
4.15 NOLIST Reset l i s t i n g controls
4.16 OCT Interpret integers a8 oc ta l
4.17 OPD Define an opcode
4.19 POPD Define a-programmed operator

4.9 EQU Equate a symbol t o a value

4.11 FREEZE Preserve symbols, opcodes, and macros . .

4.20 RELORG Assemble relat ive with absolute or igin .

1-1
1-1

1-4
2-1

2-1

2-1

2-3
2-4
2-7
2-11

3-1
4-1

4-3
4-4

4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-15
4-16
4-17
4-18
4-20
4-20
4-22
4-23
4-24
4- a

(I. 4.21 REM Type out remark 4-27
4.22 RETREL Return t o relocatable assembly 4-28
4.23 TEXT Generate tex t (4 cliaracter per word) . . 4-29

5.0 Conditional assemblies and macros 5-1

5.2 R E . CRPT. and ENDR Repeat statements 5-4
5.3 Introduction t o macros 5-9

5.1 IF. ELSF. ELSE. and ENDF I f statements 5-1

Figure 1 Information Flow During Macro Processing . 3-11
5.4 MACRO. IMACRO. and ENDM Macro def ini t ion . . . 5-15

5.4.1 Dummy arguments

5.4.3 Concatenation

5.4.5 A note on subscripts

5.4.2 Generated symbols

5.4.4 Conversion of a value t o a d i g i t s t r i ng

5.5 NARG and NCHR Number of arguments and number
of characters

5.6 Macro ca l l s

6.0 Operating NARP
5.7 Examples of conditional assembly and macros . .

5-17
5-20
5-22

5-23
5-24

5-25
5-26
5-28

6-1
6.1 Error comments on statements 6-1
6.2 Other error comments 6-1
6.3 Starting an assembly 6-3

defined symbols A - 1
Appendix A:

Appendix B:

L i s t of all pre-defined opcodes and pre-

Table of A S C I I character s e t for the SDS 940 A-2

.

' I

Y

Prefatory Note

Certain sections of the following reference manual are
written in a primer-like s tyle , especially par ts of the
introduction and the discussion of macros. However, it i s
assumed that the reader is familiar with the logical operation
of general-purpose d i g i t a l computers, and, in particular, is
acquainted w i t h the SDS 940 instruction se t (see the SDS

publication, SDS 940 Computer Reference Manual, No. 90 06 40A,

August, 1966, or the Project GENlE document, SDS 930 Instructions,
Document R-27, October 11, 1966).

Acknowledgment

Much of t h i s manual is s i m i l a r t o the ARPAS manual (ARPAS
-9

Reference Manual for Time-Sharing Assembler for the SDS 930,
Document R-26, February 24, 1967), written by Wayne Lichtenberger,
and some paragraphs, are taken verbatim from the ARPAS manual.

Related Documents

1) For a precise description of the binary program output
by NARP, see Project GENlE document, Format of Binary hrogram

Input t o DDT, Document R - a , January 26, 1967.

2) For a description of the implementation of NARP see

Project GENDF: document, Implementation of NARP, Document M-16,
January 5, 1968.

'4

Y

1-1

1.0 Introduction

NARP (new - - ARPAS) i s a one-pass assembler for the SDS 940

with l i t e r a l , subprogram, conditional assembly, and macro
f a c i l i t i e s .
one representation of machine language written in symbolic form,
is very simihr t o t h a t for ARPAS (another assembler for the 940),
but there are notable exceptions making it necessary t o do a
cer ta in amount of t ransl i terat ion t o convert an ARPAS program t o
a I'€4RP program.

i n t h i s manual; for more de ta i l s see ARPAS, Reference Manual for
Time-Sharing Assembler for the SDS 930, Doc. No. R-26,

February 24, 1967.

The source language for NARP,primarily a one-for-

No f'urther mention w i l l be made of ARPAS

To motivate the various f a c i l i t i e s of the assembler, the
following pseudo-historical development of assembly languages
i s presented.

1.1 Pseudo-history of assembly languages

A program stored in the main memory of a modern computer

COnsists of an array of t i n y circular magnetic f ie lds , some
oriented clockwise, others oriented counterclockwise. Obviously,
i f a programmer had t o think in these terms when he sat down
t o write a program, few problems of any complexity would be
solved by computers, and the cost of keeping programmers sane would
be prohibitive. To remedy t h i s si tuation, u t i l i t y programs

called a68emblers have been developed t o t ranslate programs

from a symbolic form convenient for human use t o the rather
tedious b i t patterns tha t the computer handles.
assemblers were quite primitive, l i t t l e more than number converters,

i n fac t . Thus, f o r example :

A t first these

1-2

would be converted into three computer instructions which would
add together the contents of ce l l s 4# and 4@1 and place the
resu l t i n c e l l 4@2.

sion i s trivial t o construct.
An assembler for doing this type of conver-

After a time, some i r r i t a t e d programmer who could never
remember the numerical value of the operation "load the A regis ter
wich the contents of a c e l l of memory" decided that it would not
be too d i f f i cu l t t o write a more sophisticated assembler which
would allow him to write a short mnemonic word i n place of the
number representing the hardware operation. Thus, the sequence
of instructions shown above became:

b I D A 8@88
Q ADD er@@ B su P)P14$2

This innovation cost something, however, namely the assembler
had to be more clever. But not much more clever. The programmer
i n charge of the assembler simply added a table t o the assembler
which consisted of a l l the mnemonic operation names (opcodes)
and an associated number, namely the numerical value of the
opcode.
assembler during the conversion of a program, the opcode table
was scanned u n t i l the mnemonic name w&s found; then the associated
numerical value (i n t h i s case, 55) was used t o form the instruc-
t ion.
value of XMA.

When a mnemonic name, say 'ADD', was encountered by the

Within a month, no programmer could t e l l you the numerical

I n a more established f ie ld , the innovation of these mnemonic
naines would have been quite enough for many years and many
theoret ical papers.
and f'urthermore, are noted for t he i r a b i l i t y t o get r i d of sources
of i r r i t a t ion , e i ther by writing more clever programs or by
asking the engineers t o refrain from making such awkward machines.
And the m e of numbers t o represent addresses in memory was a
large source of i r r i t a t ion .

However, programmers are an i r r i t a b l e l o t ,

To see t h i s we need another example:

(d CLA
p1 mx 8PM
2 STA plpSs167
(d BRx plf63P)ld

' I

I

1- 3

c': Asswsing c e l l 4$$ contains -7, t h i s sequence stores zeroes i n
c e l l s 5$$ through 5$6 provided tha t the sequence i s loaded i n
memory so t ha t the STA instruction i s i n c e l l 3p)p) (otherwise,

the BRX instruction would have t o be modified). This was the
crux of the problem:

run from a fixed place i n memory and could only operate on fixed
c e l l s i n memory. This was especially awkward when a program was

changed, since inserting an instruction anywhere i n a program would
generally require changes in many, many addresses. One day a
clever programmer saw that t h i s problem could be handled by a

generalization of the scheme used t o handle opcodes, namely,
l e t the programmer use symbolic names (symbols) for addresses
and have the assembler build a table of these symbols as they
a re defined and then l a t e r dis t r ibute the numerical values
associated with the Sy11~b018 as they are used.

be come 8:

Once a program was written, it could only

Thus the example

CLA
LDX TABLE3

BRX LOOP
LOOP STA TABEND,2

(Note tha t at the same time the programmer decided to move
the t ag f i e ld t o a f t e r the address f i e ld (simply for the sake
of readabili ty) and t o even dispense with it ent i re ly in case

it was zero,)
table with predefined names i n it, and a symbol table which i s
i n i t i a l l y empty.
called the location counter (LC) which keeps t rack of how many
ce l l s of program have been assembled; X is i n i t i a l l y zero.

There is another complication: In the above example, when the
symbol TABTSN i s encountered, it may not be defined yet, so the
assembler doesn't know what numerical value t o replace it with.
There are several clever ways to get around t h i s problem, but
the most obvious i s t o have the assembler process the program

t o be assembled twice.
the program it is mainly interested i n the symbol definit ions

i n the l e f t margin (a symbol used t o represent a memory address
i s called a - label) .
it is stored i n the symbol table and given the value 2 (because

The assembler now has two tables, the fixed opcode

There is also a special c e l l i n the assembler

Thus, the first time the assembler scans -
.

In our exemple, when LOOP i s encountered,

*

\

it i s preceded by two ce l l s ; remember tha t LC keeps track of
t h i s) .
are i n the symbol table wi th numerical values corresponding to

A t the end of pass 1, a l l symbols defined in the program

t h e i r addresses in the memory. So when pass 2 begins, the symbol
table is used exactly as the opcode table is used, namely, when,
for example, LOOP is encountered in the BRX instruction above,
it is looked up in the Symbol table and replaced by the value 2.

I f the progrem should l a t e r be changed, for example to
CLA
LDB E IGIIT
LDX TABLEN

LOOP STP TBEND, 2
EAX 1,2
BRX LOOP

then the assembler w i l l automatically f i x up LOOP to have the
value 3 (because of the inserted 1;DB instruction) and w i l l

convert BRX LOOP t o BRX 3 instead of t o BRX 2 a8 before.

the programmer can forget about adjusting a lot of numerical
addresses and l e t the assembler do the work of assigning new
values t o the symbols and dis t r ibut ing them t o the points where
the symbols are used. In addition to the greater f l e x i b i l i t y
achieved, symbols with mnemonic value can be used to make the
program more readable.

Thus,

The use of symbols t o stand for numerical values which
are computed by the assembler and not the programmer i s the basic
character is t ic of a l l assembly languages. I ts inception was

a fundamental breakthrough in machine language programming,dbspensing
with much dullness and tedium.

was born: the assembler-writer. To ju s t i fy h i s existence, the
assembler-writer began t o add a l l sor t s of be l l s and whistles

And a new breed of programmer
-

t o h i s products; the primary ones are discussed in the next
section (with reference t o M P) .

1 .2 Assembly languages: sOme basic constituents and concepts

- Times: assembly time: when a program in symbolic form is
converted by an assembler t o binary
(relocatable) program form.

I *

(I:

c.;

load time: when a binary program i s converted by a loader t o

actual machine language i n the main memory of
the computer.

rm time: when the loaded program i s executed.

assembler loader 80WcE: Program 7 binary program > object program

Expressions:
i s generalized t o allow an arithmetic expression (possibly

containing Symbols) t o stand for an address.
la t ions can be performed a t assembly time rather than a t run
time, making programs more e f f ic ien t .

Li terals :
M l t o be a c e l l containing -1, the l i t e r a l capabili ty allows the
programmer t o write the contents of a c e l l i n the address f i e l d

instead of the address of a ce l l .
i s preceded by '='.
fo r the value of the expression (at the end of the program):

The idea of using a symbol to stand for an address

Thus, some calcu-

Rather than writing I;DA MI. and somewhere e l se defining

To indicate th i s , the expression
The assembler automatically assigns a c e l l

CLA
LDB =8
LDX =- 16*2

LOOP STP TABBEG+16*, 2
EIu(1,2
BRX LOOP

Relocation:
have been computed re la t ive to the first word o r origin of the
program.
assembled program into core beginning a t whatever looation may be
specified at load time.
small calculation.
nth word of a program, and i f the program i s loaded beginning
a t location k, the loader must transform the reference into
absolute location n+k. This calculation should not be done to
each word of a program since some machine instructions , (sh i f t s ,
for example) do not refer t o memory locations. It 5.8 therefore

necessary t o inform the loader whether or not t o relocate the
address for each word of the program.

determined automatically by the assembler and transmitted as a
relocation factor (r factor) .

A relocatable program i s one i n which memory locations

A loader (for t h i s assembler, DDT) can then place the

Placement of the program involves a
For example, i f a memory reference i s to the

Relocation information i s

Constants or data may similarly

' I

Y

1-6

*

require relocation, the difference here being tha t the relocation
calculation should apply t o a l l 24 b i t s of the 940 word, not j u s t
t o the address f ie ld . The assembler accounts for t h i s difference
automatically.
Subprogram and external symbols : Programs often become quite

large or f a l l into logical divisions which are almost independent.
In e i ther case it i s convenient t o break them into pieces and
assemble (and even debug) them separately.
par ts of the same program are called subprograms (or packages).
Before a program assembled in pieces as subprograms can be run it
i s necessary t o load the pieces into memory and link them.
symbols used i n a given subprogram are generally loca l t o tha t

subprogram. Subprogarns do, however, need t o refer t o symbols

defined i n other subprograms.
such cross-references.

Separately assembled

The

The linking process takes care of
Symbols used for it are called external

'4

Y

symbols.

Directives:

assembler serving t o change the assembly process i n some way.

A directive (pseudo-opcode i s a message t o the

Directives are also used t o create data:

LIST
MESSAGE TEXT 'THIS IS A PDCE OF TEXT'
START LDA ALPHA

The LIST airect ive will cause the program t o be listed during
assembly, while the TEXT directive w i l l cause the following text
t o be stored i n memory, four characters t o a word.

Conditional assembly:
assembler t o e i ther assemble or skip a block of statements

depending on the value of an expression at assembly time; t h i s
i s called conditional assembly.
different object programs can be generated, depending on the values

of a few parameters.
Macros: A macro i s a block of t ex t defined somewhere i n the
program and given a name.
the reference t o be replaced by the block of tex t .

macro f a c i l i t y can be thought of as an abbreviation or shorthand
notation for one or more assembly language statements.

It is frequently desirable t o permit the

With t h i s fac i l i ty , t o t a l l y

Later references t o t h i s name cause
Thus, the

The macro

f a c i l i t y i s more powerf i l than th i s , however, since a macro may

have formal arguments which are replaced by actual arguments when

the macro is called.
One-pass assembly: Instead of processing a source program twice
as was described above (section l.l), NARP accomplishes the same
task i n one scan over the source program.
ra ther complex and is described elsewhere.
- NARP, Doc. M-16)

The method used is
(Implementation of

2-1

2.0 Basic const i tuents of WARP

2.1 Character set

A l l the characters l i s t e d i n Appendix B have meaning i n
NARP except f o r I ? ' and a ' . The following c l a s s i f i c a t i o n of

the character s e t i s useful:

le t ter : A- Z

o c t a l d i g i t : 0-7

d i g i t : 0-9
alphanumeric character :
terminator : I , ; blank CR (denozes carr iage re turn)

le t ter or d i g i t o r colon

operator : I # % & * + - / < = > @ t

del imiter : , I $ ' () c 3 . t
m e multiple-blank character (1358) may appear anywhere t h a t a
blank is allowed.
igmored except f o r multiple-blank character (S358) and carr iage

re turn (1558).

A l l characters w i t h values greater than 778 are

2.2 Statements and format

The l o g i c a l u n i t of input t o NARP is the statement,a sequence
of characters terminated by a semi-colon o r a carriage return.
There are f i v e kinds of statements:

empty:

t

1. A statement may consist of no characters a t a l l , o r only

of blank characters.

2, comment: If the very f i rs t character of a statement i s an
as te r i sk , then the e n t i r e statement i s t rea ted as a
comment containing information f o r a human reader.
Such statements generate no output.

The format f o r t h e next three kinds of statements i s s p l i t i n t o

four fields:

label field: This f i e ld i s used primarily f o r symbol def in i t ion ;

it begins with the f irst character of the statement and

ends on the first non-alphanumeric character (usual ly a

blank).

b I

2-2

/- .-
â< i opcode f ie ld : This f i e ld contains a d i rec t ive name, a macro

name, or a n ins t ruc t ion (i . e . , any opcode other than a
d i rec t ive or macro).

non-blank character after the l a b e l f i e l d and terminates

on the first non-alphanumeric character; legal terminators
f o r t h i s f i e l d a r e blank, as te r i sk , semi-colon, and

carr iage re turn .

The f i e l d begins with the first

operand f ie ld : The operand f o r an instruct ion, macro, o r

d i r e c t i v e appears i n t h i s f i e l d , it begins w i t h the first

non-blank character following the opcode f i e ld and terminates
on the f i rs t blank, semi-colon, or carr iage re turn . Note
t h a t a statement may termina.te before the operand f i e l d .

comment f ie ld : This f i e l d contains no information fo r NARP but

may be used t o help c l a r i f y a pr0gra.m f o r a human reader.

The f i e l d starts with the f i r s t non-blank character af ter

the operand f i e l d (or after t h e opcode f i e l d i f the opcode

takes no operand) and ends on a semi-colon o r carr iage r e t u r n .

Now we continue describing the kinds of statements:

3. inst ruct ion: If t h e opcode f i e l d of a statement does not contain
a d i rec t ive name or a macro name, then the statement i s
an ins t ruc t ion . An instruct ion usual ly has an expression
as an operand and generates a s ingle machine word of
program. See sect ion 3 f o r a detai led descr ipt ion of

i n s t r u c t ions.

4. d i rec t ive : If a directive name appears i n the opcode f i e l d , then
it i s a d i r e c t i v e statement. The ac t ion of each d i r e c t i v e

i s unique and thus each one is described separately (i n

s e c t i o n 4) .
5. macro: A macro name i n t h e opcode f i e ld of a statement ind ica tes

t h a t the body of t e x t associated with the macro n m e should

be processed (see s e c t i o n 5) .
Example of various kinds of statements:
* FOLLOWING ARE TWO DIRECTIVES (MACRO,ENDM) WHICH DEFINE
.* THEMACRO SXAP
SKAP MACRO; SKA 4B7; ENDM

2- 3

* NOW SKAP IS CALLED:
LDA ALPHA
SKAP; BRU €MI IF NEXXTI'VE TK2N ERROR

OKAY ADD BETA NOW A=ALPHA+BETA; BRU GOOD

I n subsequent sections the de ta i l s of instructions, directives,
and macros w i l l be explained, but f irst some basic constituents
and concepts common t o a l l of these statements w i l l be discussed.

2.3 Symbols, numbers, and s t r i n g constants

Any s t r ing of alphanumeric characters not forming a number
i s a symbol, but only the f irst s ix characters distinguish the
symbol (thus a2345 i s the same symbol as W.23456). Note tha t
a symbol may begin with a d ig i t , and tha t a colon i s treated as
a l e t t e r (as a. matter of good programing practice, colons should
be used rarely i n symbols, although they are often useful in
macros and other obscure places t o avoid confl ic ts with other

names).
of symbols are discussed.

In the next section the definit ion and the rfactors

A number is any one
a) A s t r ing of
b) A s t r ing of

c) A s t r ing of

d) A s t r ing of
followed by

A D-suffix indicates the

of the following:

d ig i t s
d ig i t s followed by the l e t t e r 'D'

octa l d ig i t s followed by the l e t t e r 'B'
octa l d ig i t s followed by the letter 'B'
a single d ig i t .
number i s decimal, whereas a B-suffix

indicates an octalnumber. I f there i s no suffix, then the
current radix i s used t o interpret the number (the current
radix is i n i t i a l l y 10 but it may be changed by the OCT and DEC

directives).
number, then an error message i s typed.
number exceeds 223-1 overflow resul ts ; NARP does not check for
t h i s condition, and i n general it should be avoided.

followed by a d ig i t indicates an octa l scaling; thus, 74B3=74@@$B.

If the d ig i t 8 or 9 i s encountered i n an o c t a l
If' the value of a

A B-suffix

Examples :
symbols: START lM CAICULATE 14D2 14BlO

numbers: 14 181, 773B 777B 13B9

'/

J

i; - 1
2-4

A s t r ing constant i s one of the following:

a) A s t r ing of 1 t o 3 characters enclosed i n double
quotes (").
A s t r ing of 1 t o 4 characters enclosed i n single
quotes (*) .

b)

In the first case the characters are considered t o be 8 b i t s

each (thus only 3 can be stored in one machine word), while i n
the second case they are considered t o be 6 b i t s each.
cases, s t r ings of l e s s than the m a x i m u m length (3 or 4, as the
case may be) are r ight- just i f ied.

- 2.2

I n both

Thus
A 'At = 1 = WA" - 1'

where denotes a blank. If' a s t r ing constant i s too long, then
an error message i s typed and only the f i rs t 3 (or 4) characters
are taken.
address computation, but are most often used as l i t e r a l s :

Normally s t r ing constants are not very usef'ul i n

I;DA WORD
SKE =*Got
BRU STOP

Both numbers and s t r ing constants are absolute, i .e . , the i r

r factor i s zero.

2.4 Symbol definit ions

Since NARP i s a one-pass assembler, the statement tha t a

symbol or expression i s "defined" usually means tha t it i s defined
a t t ha t instant and not somewhere l a t e r in the program.

assuming ALPHA i s defined nowhere else, the following
Thus,

BETA EQU ALPHA
ALPHA BSS 3

i s an error because the EQU directive demands a defined operand
and ALPHA i s not defined u n t i l the next statement. This convention
is not s t r i c t l y adhered to, however, since sometimes the s ta te-
ment r%% i s not defined" will mean tha t X Y Z is defined nowhere
i n the program.

labe l or by being assigned a value with an EQU directive (or

A symbol is defined i n one of two ways: by appearing as a

*

2-5

equivalently, by being assigned a value by NARG, NCHR, EXT

(see below), or by being used i n the increment l i s t of a RPT

or CRPT statement).
equated .

This l a t t e r sor t of symbol i s called

Labels : If' a symbol appears in the labe l f i e l d of an
instruction (o r i n the labe l f i e ld of some directives)
then it i s defined with the current value of the location
counter (r fac tor=l) .

e i ther as a labe l or as an equated symbol, the error
message (Symbol) REDEFINED' is typed and the old

def ini t ion is completely replaced by the new one.

I f the symbol i s already defined,

Equated symbols: These symbols are usually defined by EQU,

gett ing the value of the expression i n the operand f i e l d
of the EQU directive.
and have an r factor i n the range [-l5,15 1.
has been previously defined as a label, then the error

This expression must be defined

I f the symbol

message '(Symbol) REDEFINED' i s typed and the old def ini t ion
is completely replaced by the new one; i f the symbol has
already been defined as an equated symbol, then no error
message i s given, and the old value and rfactor are
replaced by the new ones.
defined over and over again, gett ing a new value each time.

Thus, an equated symbol can be

A defined symbol i s always local, and may also be external.
If a symbol i n package A i s t o be referred t o from package B,

it must be declared external i n package A .

one of the following ways:

preceded by a $ when it i s defined, then it i s declaxed external.

This i s done i n

Declared external by $: I f a labe l or equated symbol i s

$LABEL1 LDA ALPHA
LABEL2 STA BETA LABEL2 IS LOCAL ONLY
$= EQU DELTA

2-6

i)

ii)

Declared external by the EXT directive: There are two cases:
The symbol i n the labe l f i e l d is declared EXT has no operand:

external; it may have already been declared external or may
even have a $ preceding it.
EXT has an operand:

case: $Label EQU operand.
This case is treated exactly l i k e the

Certain symbols are pre-defined i n W P , i .e. , they already

have values when an assembly begins and need not be defined by
the programmer:

: !ZERO :

:I&:
This is a relocatable zero (i . e . , value = 0, r factor = 1).

This symbol is i n i t i a l l y zero (r fac tor=l) and remains
so u n t i l the END directive i s encountered and a l l l i t e r a l s

are output, a t which t h e it gets the value of the Location
counter.

of the use of t h i s symbol.

See the description of FREEZE for a discussion

* Syntactically t h i s i s not a symbol, but semantically
it acts l ike one. A t any given moment, +e has the value

of the location counter (r fac tor=l) , and can thus be used
t o avoid creating a l o t of local. labels.
Thus CLA; L D X U N G T H

LOOP STA TABLE,2; BRX LOOP
can be written as

CLA; LDX UNGTH; S U TABI;E,2; BRx *-1

If a given symbol is referred t o i n a program, but i s not
defined when the END directive is encountered then it i s assumed
tha t t h i s symbol i s defined as external i n some other package.
Whether t h i s i s the case cannot be determined u n t i l the various
packages have been loaded by DDT.

"undefined symbols" or "external symbol references.
possible t o perform) arithmetic upon them (e.g., LDA W E F + l) ;

an expreasion i n post-fix Polish form w i l l be transmitted t o DDT.

Such symbols are called
It i s

\

' I

Y

0

I

2-7

2.5 Expressions and l i t e r a l s

0

Loosely speaking, an expression is a sequence of constants
and symbols cbnnected by operators. Examples:

100-2nABC/ [ALPHA+BETA J
GAMMA

D=Q

Following i s the fclrmal description (i n Backus normal form)
of a NARP expression:

<primarp : : =Cnumber> I<string constan- I<symbol> I * I [<expr>]

<expr> : : d p r i m a r p I<unary operatom <expr> 9<expr> a i n a r y operator> <expr>
<expression> : : =cexpr> I<l i te ra l operator> <expr>

<binary operator> : :=.t I* I/ 9 + 1 - I< I<= I = I# I>= I> [& 1 I 1%
<unary operator> : :=+I -
< l i t e r a l operator> : := =

Notice that the l i t e r a l operator i s rather special, only
being allowed t o appear once i n a given expression, and only

as the f irst character of the expression.

discussed i n greater d e t a i l below.

Li terals are

The value of an expression i s obtained by applying the

operators t o the values o f the constants and symbols, evaluating

from l e f t t o r igh t except When t h i s order i s interrupted by the

precedence of the operators or by square brackets* ([, I) ; the
resu l t i s interpreted as a 24-bit signed integer.

table describes the various operators and l i s t s the i r precedences
(the higher the precedence, the t igh ter the operator binds i t s

operands) :

The following

c
*

not parentheses!

.

relocation fac tor (s)
of operand($)

relocation factor
of r e su l t

a l l operands absolute

I

4 a

2-8

Operator Precedence Comment

t 6 exponentiation; exponent must be > - 0
* T multiplication
I 5 integer division

'4

Y 4
4
4
4
3
3
3
3
3
3
2
1

unary plus
negation (arithmetic)
addition
subtraction
less than

greater than or equal t o

l e s s than or equal t o
equal t o
not equal t o

greater than
Logical not
logical and

r e su l t of operation i s
0 i f re la t ion is fa l se ,
otherwise 1

logic a 1 oper a t ion

1
applied t o a l l
24 b i t s

0 logical or
0 logical exclusive or

The rfactor of an expression i s cornpuked a t the same time

the value i s computed. There are constqaints, however, on the

rfactors of the operands of certain operators, as shown i n the

table below: (Note:

is a symbol with an rfactor of 2) .

R 1 is a symbol with an rfactor of 1, R2

examples operator

2t 4 =16,
R 1 t 1 (e r ror)

7&3=3,
6@1(e r ro r)
4/2=2,
Rl / l (error)

t

& I
7 6

/

ab so lu te

a t l eas t one rfactor
must be absolute, the
other is a rb i t ra ry

found by multi-
plying the value
of the absolute
operand times the

3*R2 has
r factor of 6,
Rl*Rl (e r ror)

*

r factor of the
other operand

0 < <= =
>= > factors, but must be I absolute

arbi t rary relocation R l = R l i s t rue
R a R 1 (e r ror)

Rl+R2 has
r e Locat ion
factor of 3

+ -
(unary an
binary)

found by applying
operator t o the
r e k c a t ion factors

a rb i t ra ry r f ac t o r s

i I of the operands

2-9

The f i n a l r factor of an expression must be in the range

If an expression contains an undefined symbol o r i f it is a
[-8191, 81911.

l i t e ra l , then the en t i r e expression i s undefined.

Although a l i t e r a l is a special kind of expression, it is
often convenient t o think of it as a quite separate en t i t y .
use of l i terals i s discussed below.

The

2-10

Programmers frequently write such things as

LDA FIVE

c'

where FIVE i s the name of a c e l l containing the constant 5 .
programer must remember t o include the datum FIVE i n h i s program

somewhere.

The

This can be avoided by the use of a l i t e r a l .

w i l l automatically produce a location containing the correct
constant i n the program. Such a construct is called a l i t e r a l .

When R l i t e r a l is encountered, the assembler first evaluates the
expression and looks up i t s value in a table of l i t e r a l s constructed
fo r each subprogram.
i s placed there.
the location of i t s value i n the l i t e r a l t ab le . A t the end of
assembly the l i t e r a l table i s placed a f t e r the sub-program.

If it is not found in the table, the value
I n any case the l i t e r a l i t s e l f is replaced by *

The following are examples of l i t e r a l s :

=10 &B6 =ABC*2O-DEF/12 ='HELP'
= a A B (This is a conditional l i t e r a l . Its value w i l l

be 1 or 0 depending on whether a A B a t assembly
time.)

Some programmers tend t o forget tha t the l i t e r a l table
follows the subprogram.
ended with the declaration of a large array using the statement

It i s not s t r i c t l y correct t o do th i s , but some programmers
attempt it anyway on the theory tha t a l l they want t o do is t o
name the first c e l l of the array. The above statement w i l l do

that , af course, but only one c e l l w i l l be reserved fo r the

array. If any l i t e r a l s were used in the subprogram, they would

be placed i n the following c e l l s which now f a l l into the array.
This is, of course, an error . Other than t h i s exception, the
programmers need not concern himself with the locations of the

l i t e r a l s .

This could be harmful i f the program

ARRAY BSS 1

3.0 Instructions

0

There are three different syntactical forms of instruction
statements, depending on the class of the instruction i n the
opcode f ie ld : (In the following, syntactical elements enclosed
i n square brackets are optional; they may or may not be present.)

c lass 8: [[$]label] opcode[*] [operand[,tag] [comment]]
c lass 1: [[$]label] opcode[*] [coment]
c lass 2: [[$] label] opcbde[*] operandf,ta@;') [comment]

Each of the syntactical elements is discussed below:

$

l abe l :

opcode :

*

operand:

A l abe l preceded by a dollar sign i s declared external
(see section 2.4).
The l abe l i s defined with the current value of the
location counter (r factorzl) .

The opcode must be e i ther an instruction which is
already defined or a number.

the value (mod 2) of the number is placed in bjd-b8

(b i t # through b i t 8) of the instruction, and it i s
t reated as a class # opcode (i .e . , operand Optional).

If an as te r i sk foUows immediately a f t e r the opcode
then b9 (the indirect b i t) of the instruction i s se t .
The operand i s an expression which m y or may not be

defined and.which has any rfactor .

be preceded by I / ' or '4 (or both i n any order);
these characters cause the following b i t s t o be set :

If it i s a number, then
9

The expression may

/ b l (index b i t)
+ b9 (indirect b i t)

Thus :
LDA /VECTOR i s the same as LDA VECTOR,2
STA c3poLNTER i s the same as STA* POINTER
I;IXA Cjcmm~ i s the same as LI]A* COMPIX,~

3-2

t a g : The tag i s an expression which must be defined and
absolute.
the instruction.

3 ' I ts value (mod 2) i s placed i n bp)-b2 of

comment: The comment does not affect the instruction generated;
it may be l i s ted .

In addition t o i t s class, tt given opcode i s designated as
being e i the r a shif t instruction or a non-shift instruct ion.
This has nothing t o do with whether the action of the instruct ion
involves shift ing, but i s simply a way of distinguishing between
two kinds of instructions. For non-shift instructions, operands

14 are computed mod 2 , while fo r shif t instruct ions there a re two
poss ib i l i t i e s :

a) If the indirect b i t i s set by I * ' or I+', then the value
of the opcode is trimmed so t h a t blO-b23 are zero, and
then the instruction i s t reated as if it were a non-
shif t ins t ruc t ion.
If the indirect b i t i s not s e t as above, then the
operand i s computed mod 2 ; it must be defined and
absolute. '

b)
9

4-1

I ,

4.0 Directives

There a re many directives i n NARP; although some of them are
Following i s R s i m i l a r , each i n general has i t s own syntax.

concise summasy:

Class Directive

Mnemonic for instructions: COPY

-

Data generat ion : DATA

ASC

TEXT

Value declaration : EQU

EXT

NARG

NCHR

Om,
porn

Assembler control : BES

B SS
EM)

DEC

OCT

FRGT

FRGTOP

IDEV

Use or Function

Mnemonic fo r RCH .

Generate data
Generate t ex t
(3 charactersper word)
Generate t ex t (4
characters per word)

Equate a symbol t o

a value

Define a symbol as
external
Number of arguments
Number of characters
Define an opcode
Define a programmed
operator

Block ending symbol
Block s ta r t ing symbol
End of assembly

Interpret integers
R S decimal
Interpret integers
RS octa l

Do not output a
specific symbol
Suppress output
of opcode

Identification of
a package

Section

4.4

4 95

4.1

4.23

4.9

4.10
5 05
5 05
4.17

4.19

4.2

4.3
4 .a

4.6

4.16

4.12

4 . 1 5

4.13

4-2

Output and l i s t i n g
control

Conditional assembly
and macros

Directive . Use or Function Section

DELSYM Do not output m y
symbols 4.7
A s semb l e r e la% ive 'r RELORG
with absolute origin 4.20 ii

RETREL ' Return t o relocatable
assembly 4.22

. FREEZE Preserve symbols,
opcodes, and macros 4.11

: LIST

NOLIST

PAGE

REM

: ' IF

ELSF

ELSE

ENDF

RFT

CRPT

Set l i s t i n g controls

Reset l i s t i n g controls
Begin a new page on
the l i s t i n g

Type out remark

Begin i f body

Alternative i f body
Alternative i f body
End if body

Begin repeat body
Begin conditional
repeat body

ENDR

MACRO
LNACRO

I

End repeat body
Begin macro body

ALternative t o MACRO
ENDM End macro body

In the remainder of t h i s section, a l l directives l i s t e d

above except for those associated with conditional assembly and

macros are described.

4.14
4.15

4.18

4.21

5 *1
5 -1
5 -1
5 -1
5 *2

5.2

5.2
5 94
5 * 4
5 - 4

. W

4- 3
\

,i
4.1 ASC Generate tex t (3 characters per word)

[[$]label] ASC st r ing [comment]

This directive creates a s t r i n g of 8-b i t Characters stored
3 t o a word. The s t r ing s t a r t s i n the leftmost character of a
word and takes up as many words as needed; i f the l a s t word i s
not f i l l e d up completely w i t h characters from the string, then
the r ight end of the word is f i l l e d out w i t h blanks.
appears, i t s value is the address of the first word of the
s t r ing. The syntactical element "string" is usually any

sequence of characters (not containing a single quote) surrounded
by single quotes. However, the f irst character encountered
af'ter 'ASC' i s used a s the s t r ing delimiter (of course, blanks

and semi-colons cannot be used as st r ing delimiters).

If a labe l

Examples :
ASC

$ALPHA ASC
'NO SINGLF: QUOTES, HERE rs A SEMI-COLON:; 1

$HERE IS A SINGLE QUOTE: '$

b
Y

/'

c,

4-4

4.2 BES Block ending symbol

[[$]label] BES expression [comment]

The location counter i s incremented by the value of the
expression i n the operand f i e l d and then the label (i f present)
i s given the new value of the location counter.
effect , a block of words i s reserved and the label addresses
the f i r s t word - a f t e r the block.

and absolute.
with the BRX instruction, as in the following loop fo r adding
together the elements of an array:

Thus, i n

The expression must be defined
This directive i s most often used i n conjunction

LDX =-LENGTH; CLA; ADD ARRAY,2
BRX *-1; STA RESULT; HLT

ARRAY €ES LENGTH

4-5
4.3 BSS Block starting symbol

[[$1 label] BSS expression , [comment]

This directive does exactly the same thing as BES except t ha t

the labe l (i f present) is defined before the location counter

i s changed.

reserved block.
BES and BSS may have a negative value, in which case the location

counter i s decremented.

Thus, the labe l addresses the f i r s t word of the

It should be noted tha t the expression for both

4-6

4.4 COPY Mnemonic for RCH

[[$] label] COPY s1,s2,s3,. . . [comment 1

(where s
COPY direct ive)

are symbols from a special s e t associated with the i

The COPY directive produces an RCH instruction. It takes

i n i t s operand f i e l d a ser ies of special symbols, each standing

fo r a b i t i n the address f i e ld of the instruction. The b i t s

selected by a given choice of symbols are merged together t o

form the address. For example, instead of using the instruction

CAB (d+600oO4), one could write COPY AB.

AB has the value 00000064.
The special symbol

’

The advantage of the directive i s tha t unusual combinations

of b i t s i n the address field--those for which there ex is t

normally no operation codes--may be created quite naturally.

The special symbols are mnemonics for the functions of the

various b i t s . Moreover, these symbols have t h i s special meaning

only when used with t h i s directive; there i s no res t r ic t ion on

t h e i r use e i ther as symbols or opcodes elsewhere i n a program.

The symbols are:

Symbol B i t Function -
A
B
AB
BA
BX
XB
E
XA
Ax
N

23 Clear A
22 Clear B
2 1
20
19
18
17
16
15
14

COPY
COPY
COPY
COPY
B i t s
COPY
COPY
COPY

To exchange the contents of the B and X regis ters , negate A,

and only for b i t s 15-23 of a l l regis ters , one would write

COPY BX,XB,N,E

4-7

4.5 DATA Generate data

[[$]label] DATA el,e2,e3,. . . [comment]

The DATA directive i s used t o produce data i n programs.
Each expression i n the operand f i e l d i s evaluated and the 24-bit

values assigned t o increasing memory locations.
expressions m a y be present.
location of the first expression.
is t o create a l i s t of data, the first word of which m a y be
labeled.

One or more
The labe l i s assigned t o the

The effect of t h i s direct ive

Since the expressions a re not res t r ic ted i n any way, any
type of data can be created with t h i s directive. For example:

DATA 100,-21’j’B,START,A/~F, ‘NUTS’ ,5
creates six words.

4.6 IfEC Interpret integers as decimal

AEC [comment]

4-8

The radix for integers i s se t t o ten so tha t a l l followim
integers (excent those w i t h a R-suffix) w e interpreted as
decimal. when an assembly begins the radix i s in i t i a l i zed t o
ten, so lIEC need never be use4 unless the OCT directive i s used,

'4

u

, , ' 1

4-9

4.7 DELSYM Do not output any symbols

DELSYM [comment 3

I f DELSYM appears anywhere in a program being assembled,
the symbol table and opcode definit ions w i l l not be output
by NARP when the ENTI directive is encountered.
of t h i s directive i s t o shorten the object code generated by
the assembler, especially when the symbols are not going t o
be needed l a t e r by DDT.

The main purpose

4-10

4.8 ETTD End of assembly

END [comment]

When t h i s directive is encountered the assembly terminates.

If the LIST directive has been used then various information may

be l i s t ed , for example undefined symbols.

. b

4-ll

4.9 EQU Equate a symbol t o a value

[$]symbol EQU expression [comment]

The symbol i s defined w i t h the value of the expression; i f

the symbol is already defined, i t s value and rfactor are changed.
The expression must be defined and must have an rfactor i n the

range [-15,l5 1. I f the symbol has been declared external before
or i f it has been forgotten (using F'RGT) then EQU preserves t h i s

information. Thus

$ALPHA EQU 4
ALPHA EQU 3

w i l l cause ALPHA t o be declared external but with a value of

three a t the end of the assembly (provided ALPHA i s not changed
again before the END direct ive) .

discussion of EQU.

See section 2.4 for more

c
4-12

4.10 M T Define a symbol as external

[$1 symbol EXT [expression [comment] 1

This directive i s u s e d t o declare symbols as external. See
section 2.4 for a discussion of the various cases.

8

\ I
/

4-13

4.11 FREEZE Preserve symbols, opcodes, and macros

FREEZE [comment 1

Sometimes subprograms share def ini t ions of symbols, opcodes,
and macros. It i s possible t o cause the assembler t o take note
of the current contents. of i t s symbol and opcode tab les and the

current ly defined macros and include them i n future assemblies,

eliminating the need fo r including copies of t h i s information
i n every subprogram's source language.

When the FREEZE d i rec t ive is used, the current table

boundaries fo r symbols and opcodes and the storage area f o r macros
i s noted and saved away for l a t e r use.
continue t o expand during the current assembly.

subprogram may be used t o make these def ini t ions; it w i l l then
end with FREEZE; END.)
with the table boundaries returned t o what they were when FREEZE

was last executed. This is done by entering the assembler
a t its "continue" entry point, i .e . , by typing

These tables may then
(A separate

The next assembly may then be s t a r t ed

&?CONTINUE NARP.
Note t h a t t he assembler cannot be released (i . e . , another

subsystem l ike Q,ED o r DDT cannot be used) without losing the
frozen information.

In conjunction with the F'REEZE direct ive, the predefined

symbol :U: is useful, especially when writ ing large
re-entrant programs.
using FREEZE and

Following is a three-package program

:LC : .
P1 DENT

<definit ions of macros, opcodes, and global equated

<definit ion of working storage (i . e., read-write

FREEZE
END

symbols>

memory)>

P2 DENT
BSS
<read-only c o d 0
END

: Tx: : - : ZERO :

'4

Ii

4-14

:E:- :ZFRO:
<read-only cod@>
END

The FREEZE direct ive at the end o f Pl preserves all the

def ini t ions i n t h i s package so they can be referenced i n packages
F2 amd p3. By including the def ini t ions of all t he working storage

c e l l s i n the preserved def ini t ions, these symbols need not be

declared as external. Also, it makes "external" arithmetic on these

s.ymbols possible i n P2 and p3, and it reduces the number of
undefined symbols printed a t t he end of an assembly.

P2 and p3 starrt with the rather Deculiar lookinst BSS i n order

t o s e t the location c u t e r so t ha t references between the

packages w i l l be correct. This is the main pur-oose of :K:,
it saves the f i n a l value of t he location counter from the

previous package for use by the current package.

t h i s scheme t o work, a31 three packages mst be loaded at the

same location, usually 0 for lazge re-entrant programs.

Packages

In order f o r

Assume ALPHA is a symbol defined i n P1. Unless some

spec ia l action is taken, ALPHA w i l l be output t o DMI three times,
once a t the end of P1, once a t the end of P2, and once a t t he end

of p3. To avoid t h i s , a l l symbol and opcode def ini t ions axe

marked after they have Been output once so t h a t they won't be

output again.

(- .

4-15

4.12 FRGT Do not outnut a snecif ic svmbol

FRGT sl, s2, . . . [comment]

The symbols si (which must have been previously defined)

are not output t o DDT. FRGT is especially useful in si tuat ions
where symbols have been used i n macro expansions or conditional
assemblies, and have meaning only a t assembly time. When DDT

is l a t e r used, memory locations are sometimes printed out i n
terms of these meaningless symbols.
able t o keep these symbols from being delivered t o DDT, hence

the FRGT direct ive.

It is desirable t o be

/

4- 16

4.15 FRGTOP Forget selected opcodes

FRGTOP s17 s2, . . . [comment 3
The s. must be opcodes. The specified opcodes are marked

1
as forgotten and w i l l not be output t o DDT.

i n advance about the standard instruct ion set (e.g., LDA, BRS,

C I O) , FRGTOP OM such opcodes has no e f f ec t .

the chief use of FRGTOP w i l l be t o suppress output of opcodes

Since DDT knows

It follows t h a t

generated by OPD and POPD.

FRGTOP does not take a label .

c

4-17

4.13 IDEM: Ident i f icat ion of a package

symbol DENT [comment]

The symbol i n the l abe l f i e l d is delivered t o DET as a
special ident i f icat ion record.

junction with i ts treatment of loca l symbols:
a name conf l ic t between loca l symbols i n two different subprograms,
DDT resolves the ambiguity by allowing the user t o concatenate

the preceding IBNT name with the symbol i n question.
during an assembly the f irst s ix characters of t he symbol followed

by the word 'DENL" &re typed on the teletype t o show the user

what package is being assembled.
can be followed by placing IIIENT's at various points i n the

package.

DDT uses the DENT name i n con-

i n the event of

Also,

The progress of an. assembly

' i

4-18

c..

4.133 LIFEXT Specify l i b ra ry symbol

Symbol LIEZXT [comment]

This direct ive causes t'symboltl t o be output t o the binary

f i l e , marked as a special "library-symbol.
binary f i l e must then be mauled by a library-making program
before it w i l l be in t e l l i g ib l e t o the loader i n DDT.

The resu l t ing

The library-maker takes a binary f i l e and moves a l l of the
library-symbols t o the beginning of the program, and puts the
r e s u l t on f i l e as a "library-program." When a " l ibrary- f i le"
(wb$ch conta$ns one or more l ibrary-program) i s loaded i n t o
DDT, the loader sows the l i s t of l i b ra ry symbols before each
l ibrqry-progrw. If any of them is currently undefined (i .e . ,
referenced but not def b e d i n previously loaded programs), the

associated library-program is loaded normally; otherwise, it

i s not loaded.
For example, one could write a s ine and cosine l i b ra ry program:

SIN LIBEXT

*SINE ROUTINE: ANGLE I N RADIANS
$SIN ZRO SDlX

(sine routine code)

cos LXBEXT

3ccOSINE ROUTINE: ANGm I N RADIANS
$cos ZRO cosx

(cosine routine code)

END

Assemble it with NARP and use the library-maker t o put it on
a l i b ra ry - f i l e as a library-program. Then, if either "SIN"

o r ''COS" is undefined when the l i b ra ry - f i l e is loaded, both
the s ine and cosine subroutines w i l l be loaded, and the symbols
"SIN"

(respectively).
each subroutine could be made in to a separate library-program.)

and "COS" defined as the entry points of the routines
(If one desired t o have them load independently,

. I

4- 19

J
(Note:
t o load it has been made; thus, undefined library-symbols w i l l

only be defined and linked i n previously-loaded programs if they
are defined and made external i n the library-program i n the

usual fashion (as i n the example).)

The library-program i s loaded normally once the decision

\
I

4- 20

L
%;he value of the statement, if it is
one of the directives: EQU, NCHR,
NARG, IF, ELSF. (in octa l)

VAL

SRC the symbolic source code

4.14 LIST Set l i s t i n g controls

4.15 NOLIST Reset l i s t i n g controls

L J

There are various booleans which control the format i n
which statements are l i s t e d (cer ta in f ie lds and/or cer ta in
kinds of statements may be
The user is allowed t o set

LIST (or NOLIST) command.
following spec ia l symbols :

s4 Set (or r e se t)

suppressed, or l i s t e d se lec t ive ly) .
(or r e se t) these booleans via the

Each of the 0. may be one of the
1

What is (or i s not) l i s t e d
-L

LCT the current value of t h e location
counter, i n o c t a l

the symbolic address of the current
value of the location counter

SLCT

COM the comment f i e l d of a statement, a
comment statement

CALL macro and RPT c a l l s

DEF MACRO and RPT def ini t ions

M P macro and RPT expansions

SKIF the skipped par t s of an IF statement

EXT external symbol references (a t the
end of the assembly

4-21

\
I

I n addition, si may be "ALL", which will cause a l l of the
booleans i n the table t o be set (or reset) .

If a LIST (or NOLIST) d i rec t ive is encountered f o r which
no arguments (s.) have been specified, NARP w i l l begin (or

cease) l i s t i n g statements on the LISTING FILE (the teletype,
i n case no other l i s t i n g f i l e is specif ied when the assembly
is begun) according t o the current s e t t i n g s of the l i s t i n g

booleans.

(or NOLIST) w i l l have the same e f f e c t .

1

Including "GO" among the arguments f o r a LIST

When NARP is called, the l i s t i n g booleans are i n i t i a l i z e d

as follows:

Set : U T , VAL, SRC, COM, CALL, DEF, mP, EXT

RESET: SUT, SKIF

and NARP is in i ts "no l ist" state, i.e., l i s t i n g will not

be s t a r t e d ' u n l e s s (and u n t i l) t h e program i n i t i a t e s it w i t h a
LIST d i rec t ive .
Examples of the LIST d i rec t ive :

NOLIST ALL Resets a l l format booleans
LIST SRC, GO Sets SRC boolean and starts l i s t i n g .

(only t h e source code w i l l be l isted)

Examples of l i s t i n g format:
U T SLCT VAL COM

33 + 00117 r h t A (A) 3 EQU 612 (SET A)
A*B, 2 00117 (HERE) HERE LDA

00120 (HERE.t.1) CLB

c-.
4 -22

4.16 OCT Interpret integers as oc ta l

OCT [comment]

The radix for integers is set t o eight so tha t alL following
integers (except those with a D-suffix) we interpreted as oc ta l .

I

I .

4-23

--

I

4.17 OPD Define an opcode

The symbol i n the l a b e l f i e l d i s defined as an opcode with
All a value equal t o the first expression i n the operand f i e ld .

expressions i n t h e operand f i e l d must be defined and absolute; if

an optional expression does not appem then t h e value 0 is assumed.

value
class must have a value of 0,1, or 2:

computed mod 224 (see important note below)

0 - the opcode may or may not have

1 - the owode does not take an

2 - the opcode requires an operand

an operand

operand

must have a value of 0 o r 1: s h i f t kludge:
0 - non-shift; ins t ruc t ion

1 - sh i f t ins t ruc t ion (see sect ion 3)
(see section 3)

Note:
bits b10-b23 s e t , t he user must be careru l of what he i s doim.
I n pa r t i au la r , if such an opcode a q e a r s i n an ins t ruc t ion which

contains a l i t e r a l or an undefined value then b i t s blO-b23 of t h e

opcode are s e t t o zero.

Although an opcode t h a t takes operands can be defined with

If t h e symbol i n t h e l a b e l f i e l d is already defined as an
oncode then t h e old def in i t ion i s l o s t .

Examples :

ADD OPD 055B5 I2
CLA Om, 04600001;8,i

RCY OPD 0662&,2,i

NOP OPD 020m

0 t i

I - - * -

4-24

4.19 Porn> Define a programed operator

symbol POPD value[, c lass [, s h i f t kludge] 1

T'nis d i rec t ive does exactly what OM) does with one addition:

The inst ruct ion BRU* is placed i n the memory location whose
address is i n b2-b8 of the value given t o the symbol (t h i s

address must be i n the range [100B, 177BI). Thus

MIN porn loom, 2
LVIN SKG* 0 THE CALL ' M I N ALPHA' WILL

BRR 0 CAUSE "FIE M I N I M U M OF
LDA* 0 A-REG AND ALPHA TO BE
BRR 0 LEFT IN A-REG.

w i l l cmse BRU IMIN t o be loaded in word 1OOB.

c

9
4- 25

4.20 flEL0RG Assemble re la t ive with absolute origin

RELORG expression [corment]

On occasion it i s desirable t o assemble in the midst of

otherwise normal program a batch of code which, although loaded
i n oDre i n one position, is destined t o run f'rom another posit ion

i m memory. (I t w i l l first be moved there in a block.)
pa r t i cu la rw usef'ul when preparing program overlays.
expression in the operand f i e l d (which must be absolute and

defined) denotes an origin i n memory.
the directive is encountered:

This is
The

The following occurs when

a.) The current value of the location counter i s saved, and

i n i ts place is put the absolute origin (i .e. , the

value of the expression).
t o DDT, however, so during loading the next instruction

assembled w i l l be placed i n the next memory c e l l available

as if nothing had happened.
The mode of assembly is switched t o absolute, i.e., a l l

symbols defined in terms of the location counter w i l l

be absolute.

This fac t is not revealed

b.)

It i s possible t o res tore normal relocatable assembly (see section

L.22).
A s an example of the use of RELORG, consider a program

beginning with REIQRG 300B.
an absolute program whose origin is OGO08, but which can be
loaded anywhere using DMI i n the usual fashion.

before executing the program it w i l l be necessary t o move it t o

locat ion 003008.

RETREL:

The assembler's out .ut represents

O f course,

As another example, consider the following use of RELORG and

<normal relocatable prom&

RELORG lOaB
<absolute program w i t h origin a t 1 0 W
RELORG 200B
<absolute program with origin a t 200P

'4

il

4-26
RETREL
(normal relocatable program>

WRG 30m
cabsolute program with origin at ? O m

END

I+ - 27

4.21 REM !bm e out remark

REM tex t

This directive causes the tex t in i t s operand and comment
f ie lds t o be typed out e i ther on the teletype or whatever f i l e
has been designated as the tex t f i l e (see section 6.2).
ty-peout occurs regardless of what l i s t i n g controls are se t .
directive may be used f o r a variety o f purposes:

the user of the progress of assembly; it may give him instructions
on what t o do next (t h i s might be especially nice for complicated

assemblies); it might aanounce the l a s t date the source language

was updated; or it might be used within complex macros t o

show which argument substrings have been created during
expansion of a highly nested macro (for debugging purposes).

This

The
It may inform

I
I I

4-28 (I: 4.22 RETREL Return t o relocatable assembSy

ETREL [comment]

%is directive i s used when it i s d e s i r e d t o return t o
relocatable assembly af%er having done a RESORG. It i s not
necessary t o use RETREL unless one desires more relocatable

program.
4.20. The e f fec ts of RETREL are

An example of the use of RETFEL is shown in section

a .) t o res tore the location counter t o the value it would

have had if the RELORG (s) had never appeared, and
t o return the assembly t o relocatable mode so tha t

labels are no longer absolute.
b.)

.

4-29
4.23 TEXT Generate tex t (4 character per word)

[[$1 label] TEXT st r ing [commentl

This directive is exactly the same as ASC (see section 4.1)
except t ha t chwacters are taken as six bits each and are stored

four t o a word.

5 -1

5.0 Conditional assemblies and macro6

3.1 IF, ELSF, ELSE, and EXDF If statements

It is frequently desirable t o permit the assembler e i the r t o

assemble o r t o skip blocks of statements, depending on the value of
an expression a t assembly time. This is primarily what i s meant
by conditional assembly. In NARP, conditional assembly i s done
by using either an i f ' s t a t e m n t or a repeat statement.

The format of an if statement is

IF expression t comment I
< if body >
ENDF [comment]

The i f body is any block of W P statements, i n par t icu lar , it may
contain d i rec t ives of the form

ELSF expression t coment 3

ELSE [coment I
and

If the operand of I F i s t rue, then the block of code up t o the

matching ENDF (or ELSF or ELSE) i s processed; otherwise, it is
skipped. The values f o r t rue and false are:

t rue : value of expression >
false : value of expression 5 #

Examples :

D A $g -) processed STA
EMDF

GAMNA] skipped LDA
STA DELTA
EMDF

5-2

')

Often there are more than two alternatives, so the ELSF

direct ive i s used in the if body.

skipping a block of statements, i ts operand is evaluated (jus t

as fo r I F) t o decide whether t o process the block following the

ELSF.

Exanples :

When ELSF is encountered while

I F
LDA
ELSF
LDA
ENDF

I F
LJlA
ELSF
LDA
ENDF

IF
m
ELSF
LDA
ENDF

I F
LDA
E LSF
LDA
ELSF
LDA
ENDF

skipped

processed

skipped

skipped

processed

skipped

skipped

processed

skipped

From the last two examples above it should be clear tha t e i ther

no blocks are processed or precisely one is; thus, as soon as one

block i s processed, all following blocks are skipped regardless

of whether the ELSF expressions are true.

5-3

An ELSE directive is equivsllent t o an ELSF directive w i t h a

t rue expression.
Example :

skipped
rF 0 1
LDA ALPXA
ELSE
LDA BETA processed
ENDF

As a more general example, consider the following:

rF e l
< body 1 >
ELSF e2
< body 2 >
ELSF e3

< body 3 >
ELSE

< body 4 >
ENDF

There a re four poss ib i l i t i es :

a) e l > 16 : process body 1, skip the other three

b) e l 5 16, e2 > 6 : process body 2, skip the other three

c) e l 5 16, e2 c - 16,

a) e l <, (li, e2 c - 16,
e3 > 16 : process body 3, skip the other three

e3 5 16 : process body 4, skip the other three

The bodies between the IF, ELSF, ELSE, and ENDF directives

may contain a rb i t ra ry NARP statements, in par t icular they may
contain other i f statements. This nesting of if statements may
go t o any level .

When evaluating the expression i n the operand f i e l d of I F or
ELSF, a11 undefined symbols are t reated a s if they were defined w i t h

value -1. These expressions must be absolute.

5 -4

RPT, CRFT, andENDR ReFeat statements

A repeat statement i s a means of processing the same t ex t many
times. The format is

[[$]label] RPT expression[, increment l i s t] [comment 3
< repeat body >
ENDR [comment]

'1

The value of the RFT operand (which must be defined and absolute)
determines how many times the repeat body w i l l be processed,while
the increment l i s t (described below) i s a mechanism t o allow the
values of various symbols t o be changed each time the repeat body
i s processed.
Example :

RBC RFT 4
DATA 0
ENDR

This is equivalent t o
A X DATA 0

DATA 0
DATA 0
DATA 0

An increment l i s t has the form (s=el[,e2]). . (s=el[,e2])

where s stands fo r a symbol and e l a n d e2 denote expressions
(which must be absolute; undefined symbols are t reated a s if they
were defined with the d l u e -1).

f o r , t h e first time, each symbol i n the l i s t is given the value of
i t s associated e l . Thereafter, each symbol is incremented by the
value of i t s associated e2 ju s t before the repeat body i s processed.
If e2 is missing, the value 1 is assumed.

the number of elements tha t may appear in an increment l i s t .

Before the repeat body i s processed

There i s no l i m i t on

c
5 -5

Example :

RPT 3, (I&)(J=O,-l)
DATA I

This r e su l t s in code equivalent t o the following:

There is another format fo r RPT:

[[$] label] RPT (s=el[,e2l,e3)[increment l i s t] [comment]

I n t h i s case, the number of times the repeat body is processed i s
determined by the construct (s=el[,e2],e3).
an increment l i s t except t h a t it includes a th i rd expression

(which must be absolute; all undefined symbols a re t rea ted as if

they were defined with the value -l), namely a bound on the value

of the symbol. As soon as the bound i s passed, processing of the
repeat body stops.

have been achieved by writing the head of the repeat statement as

This i s the same as

In the example above, the same e f f ec t could

RPT (J4, -1, -2)(14)
or as

RPT (1=4,6)(JPO, -1)

Note t h a t the bound does not have t o be posi t ive or greater than
the i n i t i a l value of the symbol being incremented; the algorithm

fo r determining when the bound has been passed is given below.

Occasionally one wishes t o perform an indefini te number of

repeats, terminating on an obscure condition determined i n the
course of the repeat operation.
CRPT, serves t h i s function.

The conditional repeat direct ive,
Its e f fec t i s l i k e tha t of RPT (and

its repeat body is also closed off with an ENDR) except tha t instead

of giving a nmber of repeats, i ts associated expression i s evaluated
j u s t pr ior to each processing of the repeat body to determine
whether t o process the block. A s fo r U, > 0rr;eans true, < 0 means

f a l se ; the expression must be defined and absolute each time it is
evaluated. The form i s

'4

Y -

[[$]label] CRPT expression [,increment l i s t] [comment]

For example, one may write

CRPT X > Y
or

CRPT STOP, (X=l, 2) (Y=-3)

Note that the statement

CRI?T 10

w i l l cause an i n f in i t e number of repeats.

The following flowcharts describe precisely the actions of

the various repeat options :
RPT expression[, increment list1

s t a r t , V
Yes no i n i t i a l i z e symbols i n hcrement

repeat block 1ist;evaluate a l l e2 expressions
Y c t

process the r

I

increment the symbols i n

are evaluated ju s t once.

5 -7

(1
list J

increment l i s t ; evaluate
a l l e2 expressions.

e

5 -8

CRPT expression[, increment l i s t J

.L - - - - - - evaluate expression [> This expression i s eval- I

-
increment the symbols i n the increment

l i s t

and, of course, the values
of the symbols i n t h i s

The contents of a repeat body may contain any NARP code, i n

par t icular it may contain other repeat statements; the nesting of

repeat statements may go t o any level.

5 -9

5.3 IntrQdUCtiQn t o macros

On the simplest l eve l a macro name may be thought of as an
abbreviation or shorthand notation for one or more assembly
language statements.

an opcode i s the name of a machine command and a macro nme i s

the

In t h i s respect it i s l i k e an QpCode i n t h a t

name of a sequence of assembly language statements.
5'he 940 has am instruction fo r skipping i f the contents of

a specified location are negative, but there i s no instruct ion

for skipping i f the accumulator i s negative.
SKA (skip i f memory and the accumlator do not compare ones) w i l l

serve when used w i t h a c e l l whose contents mask off all but the sign
b i t .

if A i s posit ive".

The instruction

The meaning of S U when used w i t h such an operand i s "skip

Thus a programmer writes

BRU NEGCAS NTGATIVE CASE
SKA =4B7

Rowever, it i s more than l i ke ly the case tha t the programmer

wants to skip if the accumulator i s negative, Then he must write

SKA =4B7
Bnu *+2
BRU POSCAS POSITIVE CASE

'Both of these s i tuat ions m@ awkward i n terms of assembly language

programing.
But we have i n effect just developed simple conventions f o r

doing the operations SKAP and SKPN (skip i f accumulator posi t ive
or negative). Define these operations as macros:

SKAP W R O
SKA =4B7
EM14M

SKAN MACRO
SKA =kB7
BRU *+2
ENDM

t

Now, more i n keeping w i t h the operations he had i n mind, the

t

5 -10

Programmer may wr i t e

A22 SICAN
BRU FQSCAS

The advantages of being able t o use SKAP and SKAN should be

The amount of code wr i t t en i n the course of a program apparent.

is reduced; t h i s i n i tself tends t o reduce e r r o r s .
advantage is t h a t SKAP and SKAN a re more ind ica t ive of the ac t ion
t h a t the programmer had i n mind, SO t ha t programs wr i t t en i n t h i s

way tend t o be e a s i e r t o read. Note, inc identa l ly , t h a t a label

may be used i n conjunction w i t h a macro.

are usua l ly treated like labels on i s s t r u c t i o n s ; they are assigned

t h e cur ren t value of t he loca t ion counter. This w i l l be discussed

i n more d e t a i l la ter .

A g rea t e r

Labels used i n t h i s way

Before discussing more complicated uses of macros, some

add i t iona l vocabulary should be es tab l i shed . A macro i s an

a r b i t r a r y sequence of assembly language statements together

with 8 scymbolic name. -
area. of memory ca l l ed the s t r i n g storage.

(or, as is more f requent ly sa id , defined) by giving a name and the

associated sequence of statements.

of the sequence of statements are designated by t h e MACRO d i r ec t ive :

During assembly, the macro i s s tored i n an

Macros are crea ted

The name and the beginning

name MACRO

ENlM

The end of t he sequence of statements is indicated by t h e ENDM

d i r e c t i v e .

Refer t o f igu re 1. When the assembler encounters 8, MACRO

d i r ec t ive , switch B is thrown t o pos i t ion 1 SO t h a t the macro

i s simply copied i n t o the s t r i n g storage; note t h a t the a,ssembler
does - no normal processing but simply copies the source language.

When the ENDM terminating the macro de f in i t i on i s encountered,

switch B is put back t o pos i t ion 6 and the assembler goes on
processing as usual.

It is poss ib le t h a t within a. macro de f in i t i on o ther d e f i n i t i o n s

Figure 1: Information Flow Durfng Macro Processing

A B

0 0

0 1

1 0
1 1

- - Effec t

normal assembly
macro d e f i n i t i o n

macro expansion

macro d e f i n i t i o n during

macro expansion

cj

may be embedded. The macro definine machinery counts the

occurrences of the MACRO directive and matches them against the
occurrences of Empi.

position 0 only when %he EXDM maxching the first MACRO i s

encountered.

brackets around a segment of source language. Structures l i k e

Thus switch 13 i s actually placed back i n

Therefore, IflACRO and EXDM w e opening and closing

the following are possible:

name 1
name 2

name 3

name 4

name 5

The u t i l i t y of t h i s structure w i l l not be discussed here. Use
of t h i s feature of imbedded definit ions should i n fact be kept
to a minimum since the implementation of t h i s assembler i s such

t h a t it uses large mum'cs of s t r ing storage i n t h i s case. What

i s importan%, however, is an understanding of when the various
macros are defined. I n particulas, when name 1 is being defined,
name 2 , 3, e tc . , are @ defined; they axe merely copied into

s t r ing storage. Name2, fan* example, w i l l not be defined u n t i l

name1 i s expanded.
opcodes, may be redefined.)

(It should be noted tha t macros, l i k e

The use of a macro name i n the opcode f i e l d of a statement

is referred t o a s a a.
ca l l , moves switch A t o position 1 (see f i w e 1).

assembler from the or iginal source f i l e temporarily stops and comes
fnstead from s t r ing stora.ge. During t h i s period the macro is said

t o be undergoing expan8ion.

defined before it i s called.

The assembler, upon encountering a macro
Input t o the

It i s clear t ha t a macro must be

An expanding macro may include other macro ca l l s , and these,
i n turn, may c a l l s t i l l others.

themselves; t h i s is called recursion. Examples of the recursive .
use Qf mcros are given l a t e r .

In fact , macros may even c a l l

When a new macro expansion begins

5 -1-3

w i t h i n a macro expansion, information %bout the progress of
the current expansion i s saved. Successive macro c a l l s cause

s i m i l a r information t o be saved.

the information about each previous expansion i s restored. When

the f i n a l expansion terminates, swttch A is placed back i n
posit ion 0, and i n p t i s again taken from the source f i l e .

A t the end of each expansion

NOW l e t us carry our example one s tep fur ther . One might
It might argue tha t the action of skipping i s itseLf awkward.

be preferable to write macros BRaP and BRAN (branch to specified

location i f contents of accumulator are posi t ive or negative).
How i s one to do t h i s ? The location t o which the branch should
go i s not known when the macro i s defined, i n fac t , d i f fe ren t

locations w i l l be used from c a l l to c a l l . The macro processor,

therefore, must enable the prqgammer to provide some of the

information f o r the macro expansion a t c a l l time. This is done
-__.

by permitting dummy argunents i n macro def ini t ions to be replaced

by arguments (i . e . , a rb i t r a ry substn*ings) supplied s t c a l l time.
Each dummy argument i s referred t o i n the macro def ini t ion by a

subscripted symbol.

operand f i e l d of the MACRO direct ive.

This symbol or dummy name - is given i n the

Let us define the macro BRAP:

BRAP MACRO MBEL
SKAN

ENDM
BRU LABEL(1)

When called by the statement 'BRAP POSCAS', the macro will

expand t o
SKA 4 B 7
BRU w.2
I3RU FQSCAS

Note tha t BRAP was defined i n terms of another macro, SUN. Also

note tha t as defined BRAP was intended to take only one argument;

other macros may use more than one argument.

The macro CBE (compare and branch if equal) takes two

arguments.
compared for equality w i t h the accumulator; the second i s a

branch location i n case of equality.

The first argument is the location of it c e l l t o be

The def ini t ion is
CBE NACRO D

SIC2 D(1)

ERU D (2)
BRU -* +2

Ern24

When CBE is called by the statement

CBE =21B, EQLOC

the statements generated w i l l be

SKE =2lB
BRU *+2
BRU EQLoC

Note tha t i n the macro ca l l , the arguments are separated by

commas.
The following sections describe macro def ini t ions and

c a l l s Ln more de ta i l .

i
f

I
I

5-15

5.4 MACRO,, LMACRO, and Eh92 h e r o d e f i n i t i o n

The form of a macro de f in i t i on is:
MACRO

[dummy[,generated, expressionll [comment]

where nane, generated, and dunmy are a l l symbols, and expression
i s an expression.

M A C R O is completely equivalent t o MAC80 except t h a t i f

name i s defined as a macro w i t h MACRO the construct -
labe 1 name argusneDts

w i l l automatically cause label t o be defined as the cur ren t
value of t h e loca t ion counter, whereas i f nome were defined
w i t h LMACRO t h i s automatic de f in i t i on of label would not
occur.

-

Some detai ls of the d e f i n i t i o n

' I i
I

I
i

1

If generated appears, it should not be the same symbol
as dummy, and ne i the r of them should be "MACRO", "LMACRO", o r
"ENDM. ' I

If name - i s a l ready defined as an opcode, the old de f in i t i on

If the MACRO (or MACRO) d i r ec t ive h a s no operand, then

i s completely replaced by the new.

name i s defined as an opcode tha t takes no operands.
- name becomes an opcode t h a t may or may not take an operand.

Otherwise, -

Whole-line comments (l i n e s beginning w i t h *) i n the macro
body are not saved i n s t r i n g storage as p a r t of the macro
de f in i t i on , but comments following in s t ruc t ions are. Thus, it
behooves the programmer t o avoid the latter, as they eat

s t r i n g storage.

. ?

5-16

'I
/.

When a macro body i s placed i n s t r i n g storage, superfluous
blanks a re removed. Thus, any contiguous s t r i n g of blanks i s

compressed t o one blank with the following exceptions:

a)

b)
c) Blanks enclosed i n parentheses are not compressed. In

t h i s use, the nes t ing of parentheses i s taken i n t o
account, but a parenthesis between s ingle o r double
quotes i s not considered as p a r t of the nes t ing
s t ruc tu re .

Blanks enclosed i n s ing le quotes (I) a re not compressed.
Blanks enclosed i n double quotes (") are not compressed.

I n most cases the programmer need not worry about t hese
conventions, although there a re times when he may ge t pinched.

For example, if

ASC 7 h zB%

appears i n a macro de f in i t i on , it w i l l be expanded as

ASC 7 L B %

To avoid such problems use

ASC

' I

i

5.4.1 Dummy arguments

5-17

The dummy ar,w.urr,ent spec i f ied as ax2 operand of the MACRO
d i r e c t i v e may a-p-pear mywhere i n the macro body, followed by a

subscr ip t . A t c a l l time the subscript i s evaluated and i t s value
is used t o s e l e c t the appropriate argument supplied i n the c a l l .
Before describing the various kinds of dummy arguments a f e w

conventions are needed:

a) I n t h e following, l'argurnent'l w i l l r e f e r to the character
s t r i n g as given i n the macro c a l l a f t e r possiSle enclosing
parentheses have been removed (see sec t ion 5.6 f o r the

format of argument s t r i n g s) .
The number of arguments supplied by the c a l l is n (n > O) .

The nmber of charac te rs in argument e i i s n (e i) .
The s t ruc tu re e i for i an in teger stancis for an expression.
(However, i t s value stands for sone argument usually, so
e i w i l l be used somewhat mbiguously t o stand f o r an
expression or the w l u e of an expression.)
argument i n a c a l l is numbered 1.

The dummy argument i s assumed t o be "D".

b)

c)
d)

The f irst

e)
Witch the above i n mind, we consider the three forms of dummy

arguments :

This expands t o argument el (which may be the n u l l s t r i n g) , where

0 5 e l 5 n.
the macro c a l l ; see sec t ion 5.6.)
Spec ia l notation: D() = D (1)

1) D W

(If e l = 0 then D(e1) expands t o the label f i e l d of - -

2) D(el,e2)

If e l > e2 then t h i s expands t o the n u l l s t r i n g (range of Values
of e l and e2 i s a r b i t r a r y) , otherwise, t h i s expands t o argument
e l through e2, where 0 <, e l 5 e2 <_ - n, with each argument enclosed
i n parentheses and a coma inser ted between each argument.

example, ~ (3 , 3) = (~ (3)) .
Spec ia l notation: D(,) = D(1,n)

For

D(,e l) = D(1,el)
D(e1,) = D(e1,n)

i I ' I

i

I - .
I

(1-

(3

3) D (e l W , e 3)
In a l l cases, 0 f e l < n must be t r u e .
expands t o the null s t r b g (rdnge of values of e2 and e 3 i s
a r b i t r a r y) , otherwise, it expands t o characters e2 through e3
of argument e l , counting t h e f i r s t charccter of an argument as

character 1.

the neares t boundary i s chosen. To be more prec ise , before using
e2 and e3 t o s e l e c t the piece of argument e l t h a t i s desired, t he
following transformation i s made:

If e2 > e 3 then t h i s - -

If either e2 or e3 l i es outside the argument, then

e2:= m (l , e2) ; e3:= max (l , e 3) ;
e2:= min (n (e l) , e 2) ; e3:= min (n (e i) , e 3) ;

If argument e l i s the n u l l s t r i n g , then the dummy argument expands

t o the n u l l s t r i n g regard less of t h e values of e2 and e3.
Special notations:

D(el$,) = D(el$l, n (e1)) = D(e1)
D(el$,e2) = D(el$l,e2)
D(el$e2,) = D(el$e2,a(el))
D (el$e2) = D (el$e2, e2)
D(el$) = D (e l $ l) = D(el.$l,l.)

In any of the s i x forms mentioned above, e l may be missing;

i f so, 1 is assumed. E.g., D ($) = D (l $ l , l) .

A general. rule which w i l l help i n remembering what t h e s p e c i a l

no ta t ions mean i s the following:
missing from a form, the value 1 i s assumed unless the expression

is missing from a place where an upper bound i s expected (as i n

D(3,) o r D(3$2,), i n which case the l a r g e s t 'reasonable' Value is

"Whenever an expression i s

, assumed."
In any of t h e above three cases, i f an expression which

designates an argument is out of range, then an e r r o r message is

ty-ped and argument 0 i s taken.

5-19

Following i s an example of the various forms of d m y

arguments :

Macro de f in i t i on :
-) 2 MACRO D

N2) D O '
ASC 'D (<2,4) '

ASC '3(*3,4) '
TEXT "4,) ' D (- 3 , -4) NULL STRING

ASC 'D(2$-3,18) '
ENDM

Macro ca l l :
BETA XAMPLE ALPHA, ADD, G!Q@IA, DELTA

Macro expansion :
BETA ADD

ASC
TEXT
ASC
ASC

' I

J'

ALl?HA BETA
(c.mm) , (DELTA)

'(DELTA)' NULL STRING
' rn'
'ADD

0

0

5 -20

5,4.2 Generated symbols -

A !mcro should not, of course, have i n i t s def in i t ion an

instruct ion havir,g a l e b d . Successive calls of t h e macro would

produce u. rnultipb-defined symbol. Sonetirzes, however, it i s

convenient to put a l a b e l on an inst ruct ion within a macro.
There are &t l e a s t Iwo hnys of doing t h i s . The f i rs t involves

transmitt ing the label as a macro ur,ment when it i s called.
This i s most reasonsble i n ixny cases; -it is I n f a c t of ten

desirable so t h a t the prograpmer can control the l a b e l being
defined snd can r e fe r t o it elsewhere in the program.

However, sktca'cions do a r i s e i n which the l a b e l i s used

purely f o r reasons loca l t o the macro and w i l l not be referred

t o elsewhere. I?? cases l i k e t h i s it i s desirable to allow for

the autonatic creation of labe ls so t h a t t he pmgrmner i s freed

from worrying about t h i s task. T 5 i s may be done by means of the

generated s.pbol.

A gmerated symbol name - m y be declared when a macro i s

defined, specifyi.ng the name and the mxin?um number of generated

symbols which will be encountered during an expansion.
two items follow the durmy symbol name given in the MACRO di rec t ive

(a s shown i n section 5.4 above) i f the programmer wishes to use
generated symbols i n a macro. For e x q l e ,

MUMBU MACRO D , G , 4

< mcso body >
ENDM

These

might contain references t o G (l) , G (2) , G (3) , and G(4), these

being individual generated symbols.

With regard t o generated symbols the m c r o expansion machinery

operates i n the following fashion:
fo r each macro is i n i t i a l i z e d t o zero a t the beginning of assembly.
A s each generated symbol is encountered, the expression const i tut ing

i t s subscript i s evaluated.

value, and the sum is produced as a s t r ing of d i g i t s concatenated

t o the generated symbol name; the f irst d i g i t i s always 0 t o

reduce the likelihood of the generated symbol being iden t i ca l to

A generated symbol -- base value

This value is added t o the base

5 -21

a n o r m 1 symbol defined elsewhere by the programmer. Thus, the
f i rs t t-tme W B L E i s called, G (2) w i l l be expanded as G$2, G(4)
as ~$4, e t c .

A t the end of a m x r o expansion, the generated symbol base
value i s incremented by the amount designated by the expression

following the generated symboL name i n the MACRO di rec t ive . This

i s 4 i n the case of MUMBLE. Thus, the second c a l l of MUMBIZ w i l l

produce i n place of G (2) , G@, the t h i r d c a l l w i l l produce G@$,

e t c .

be kept as short as possible.
It should be c l e a r t ha t the generated symbol name should

The expression i n the macro head (c a l l it m) mcst have a ,

value i n the range [1,1023].
have a value i n the range [l , m] .

A generated symbol subscript must

.

' I

i

L,

I
i
I

I

5 -22

5.4.3 Concatenation

Occasionally, it i s desirable to have R d m y argument follow
inmediately af ter an alphanumeric character, for example, t o

have D (1) follow just a f t e r ALLEN.

would not recognize the duiiy because it would see ALPfIAD(1)

instead of D (1) .

syx--301 I .& ' i s introduced. Its sole p w o s e i s t o separate a
dumy argment (or conceivably a generated symbol) from a preceding

alphanumeric character during macro definit ion. Thus, the example

becomes ALPI-N.&3(1).

s t r i ng storage so it does not appear during expansion.

But then the assembler

To get around t h f s problem the concatenation

The concatenation symbol i s not stored i n

A s an exmple, say t h a t we w i s h t o define 8 macro STORE,

and suppose we ham established the convention t h a t cer ta in

temporary storage c e l l s begin with the l e t t e r s A, B, or X
depending on what reg is te r i s saved there. The def ini t ion is:

If called by the statements

STO3E B17
STOFiE X44

the macro w i l l expand as

STB B17
STX x44

The concatenation symbol may appear anywhere i n a macro

def ini t ion, but it i s only necessary i n the case described above.

If one macro i s defined within another, any concatenation symbols
within the inner macro w i l l not be removed during the def ini t ion

of the enclosing macro. I

5 -23

2 .k .4 Conversion of a value t o a cIi:(i-t, string
A s an adjunct t o the automatic @;werat ion of symbols (or

fo r any other purposes f o r which it may be su i ted) a capabi l i ty

i s provided i n t h e assembler's macro expansion machineyr f o r

conversion of t h e value of an expression a t c a l l time t o a

s t r ing of decimal d ig i t s . The construct

(b q r e s s i o n)
w i l l be replaced by a s t r ing of d i g i t s equal t o the value of

t h e expression. For example, if X=5 then
BB ($2;"x+1)

w i l l be transformed in to

ABll

If the value of t h e expression i s zero then the d i g i t s t r i ng is

'0'; if it i s negatcve then t h e d i g i t s t r i ng i s preceded by a

minus sign.
7kis convprsion scheme can also be used inside repeat blocks;

for example

RPT (Id, 10)
TEE/Ip($I) BSS 1

EXDR

i i
i
i

creates 10 c e l l s labe l led TEMP1 through TEMPlO.

~ .
5 -24

5.4.5 A note on subscripts

The expressions used as subscripts fo r dummy arguments
and generated symbols, a s w e l l as the expressions used i n the
conversion t o a d i g i t s t r ing nust be absolute. Any undefined

syhbols appearing i n these expressions are t r ea t ed as i f they

were defined with t h e value -1.

contain dummy arguments, generated symbols, and ($. . .), so
constructs l i k e ($4+D(I*D(3))) are possible.

These expressions may themselves

(J
5 95 M G and NCMR Number of asgxnents and number of characters

Macros a re more useful i f t h e nllmi'oer of arguments supFlied
2"ne precise meaning of a macro (and at c a l l time i s not fjxed.

indeed, t he r e s U of i t s e q m s i o n) may. depend on t h e number or
arrangemcnt of i t s arguments.
macro undergoing expansion must be able t o determine a t c a l l time

t h e nwher of arguments supplied.
possible.

I n order t o permit t h i s , t he

The NARG d9recti.ve makes t h i s

NARG f'unctions l i k e EQU except t h a t no expression i s used
with it. I t s form i s

C$3 symbol M G [conmnt]

The f'unction of t h e direct ive i s t o ecyuate the value of the symbol

to t he number of arguments supplied t o t h e macro current ly

undergoing expansion.

i n expressions fo r any purpose.

even one which has no dummy a.rgumen'c (and thus never has any
arguments a t c a l l time); it i s an e r ror f o r NARG t o appear outside

a macro.

The symbol can then be used by i t s e l f or
NARG may appear i n any macro,

It i s a l so useful t o be able t o determine a t c a l l time t h e

number of characters i n an argument. NCKR fhnctions by equating

t h e symbol i n i t s l abe l f i e l d to t he number of characters i n i t s
operand f i e l d . Its form i s

[$1 symbol NCHX [character string [comment] 1
where "character string" has exactly t h e same form as an argument
supplied f o r a macro c a l l , i .e . , i f it involves blanks, commas,

o r semi-colons it should be enclosed i n parentheses (see sect ion

5.6). NCT-TR can appear axywhere, both inside and outside macros,

but it i s most usef'ul i n macros f o r determinina the length of

a r m e n t s .
Examples :

A NCHR mm A: =6

c NCrn D (I) C:=?
B NCHR (, ,xn,, 1 B:=7

8

r .

I

5 -26

5.6 Macro c a l l s

The format of a macro c a l l i s :

[[$!label] macronam [args trine; 1 [coment 3

Such a c a l l causes the macro whose name appears i n the

opcode f i e l d t o be expanded, with the d m y arguments in the

macro body replaced by the ac tua l arguments of the argstring.

The l abe l f i e l d i s always transmitted as argumnt 0, so
t h a t D(el),where e l has value 0, i s always l ega l inside a macro.

An occurrence of D(el), where el*, w i l l be replaced by the

l abe l f i e l d .

t o the n u l l str ing;.

t h i s way:

f i e ld , preceded by '$ ' if the l abe l f i e l d begins with '$ ' .

If the l abe l f i e l d i s empty, then D(e1) expnds

A t most seven characters w i l l be transmitted

the f i r s t s ix characters of the sydool i n the l abe l

If the user wishes t o transmit an argument t o a macro i n

the labe l f i e l d of the macro ca l l , but does not w i s h t o have

the symbol i n t h i s f i e l d defined, he should define the macro

with IMACRO rather than MACRO. (See section 5 .4) An example:

when cal led by:

expands as:

DATA 4B7
DAm 4B7
DATA 4B7
DATA 4B7

DTE DATA -4

Notice t h a t t h i s would have caused a doubly-defined symbol

error had YiCRO been used rather than INACRO.

5-27

A macro c a l l may or may not have an arg s t r ing (see sect ion

5.4).
of ar,nume:its, i n f ac t , more than a re referred to by the macro.

If an arg s t r i n g i s present, it may contain any number

Before describing BPI. arg s-trtng, the following should be

noted: blaidis, cornrnas , semi-colons, and parentheses t ha t a re
enclosed i n s ingle or double quotes are t rea ted exactly l i k e

ordinary characters enclosed in quotes; they do not serve es

terminators, s e p r a t o r s , de l in i te rs , or t he Like. In ef fec t ,
when the argument col lector in NARP i s col lect ing arguments
f o r a macro call., the occurrence of a quote causes it t o stop

looking f o r special characters exceDt f o r a matching quote (and,

of course, carriage yeturn, which i s an absolute terminator).
A single quote enclosed in double quotes i s not a spec ia l

character and vice versa. Thus, when a blank, comma, semi-colon,
or parenthesis i s referred t o i n the following, it i s under-

stood t h a t it is - not enclosed i n quotes.
An arg s t r ing f o r a macro c a l l has the following format:

<arp,<ar@, ..., <up <terninator>

where a tem:cator is a blank, semi-colon, o r carriage return.
There are three forms of <sr@:

1.

2.

< a r e may be the n u l l s t r i n g ,
If the f i rs t character of < a r p is - not a l e f t paren-
t h e s i s then <ar@ i s a s t r i n g of characters not con-

ta in ing blank, coma, semi-colon, or carriage re turn
(remember t h a t blanks, commas, and semi-colons may

appear i n < a r p i f they are enclosed in quotes).
If the f i rs t character of <nr@ I i s a l e f t parenthesis
the < a r p does not terminate u n t i l a blank, comma,

o r semi-colon i s encountered a f t e r the r i g h t parenthesis

which matches the i n i t i a l l e f t parenthesis ("matches"

means t h a t a l l l e f t and r igh t parentheses i n the

argument a re noted and paired off w i t h each other so
t h a t a nested parentheses s t ructure i s possible) .

O f course, a carriage return at any point immediately

3.

G
I
f

'0

0

5 -28

terminates <a??@. Again, remember tha t blanks, commas,

semi-colons, and parentheses enclosed In quotes a re
ignored when <ar@ i s being delimited. The i n i t i a l

l e f t parenthesis and i t s matching r i g h t parenthesis
(which need not be the las t character i n carp) are

removed before <ar@ is transmitted t o the macro.
Examples :

AMAC (,L;L,),, *XOUSE,,ROGER', (AB~') ' ')

D (1) = ,L;L,

D (2) = n u l l s t r i n g
D (3) = 'HOUSEYLROGEX'

D (4) = AB")"

5.7 Ex&-ples of c o n d i t i o m l assembly 2nd macros

1. It i s desired to have a p a i r of macros SAVE and RESTOR

f o r saving and res tor ing ac t ive r e g i s t e r s at the beginning and
end of subroutines. These macros should take a var iable number

of a.rguments so t h a t , f o r example, one can wr i te
SALT A, SUBRS
R E S T 0 2 A, B,X, SUBRS

t o generate the code

STA SUBRSA
LDA SUBRSA
LDB SUBRSB
LDX SUBRSX

To t h i s end we f i rs t define a macro MOVE which i s ca l led

by t h e same arguments delivered t o SAVE and RESTOR, but with

t h e s t r i n g 'ST' or 'LD' appended.
NOVE MACRO D
X NnSG

ENDR
ENDM

Now SAVE and RESTOR can be defined as

5 -29

RESTOR MACRO D
MOVE ZD,D(,)
E ”

2 . Many pro~l;r’x.xfiers use f l a g s , nernory c e l l s t h a t a re
used as binary indicators .

negative) makes it easy t o tes t these flctgs i f the cor.vention i s
used that a f l a g i s set (t rue) i f it contains -1 and r e s e t (f a l s e)

i f it ccztains $. We want t o define two macros, SXT and RESET
t o manipulate these f l a g s ; f i r t h e m o r e , it i s desirable t o

de l iver a t c a l l xime the nme of ar, act ive r e g i s t e r which w i l l

be used f o r the actior.. Calls of the mamos w i l l look l i k e

The 5nstruction Slm (slri,p i f memory

As i n the previouis example we m a l a use of‘ an Intemmiiate

macro, STORE, which takes the sane arguments as SET and RESET.

STORE YAC RO D
X N%G

R E (Y=2, x)
ST.&D(l) D(Y)
ENDR
ENDM

Now SET and RESET a r e defined as

SET MACRO D
LD.uI(1) =-1
STOP3 D(, 1
END14

RESET mCRO D
CL. &D (1)
STORE D(, 1
E”

3. The following macro, MOVE, takes any number of pairs

of arguments; the f irst argument of each p a i r i s move6 to t h e

second, but an argument may i t s e l f be a pair of arguments, which

may themselves be pairs of arguments, e t c .

argument s t ructures and transmits them t o a second macro MOVE1.

MOVE e x t r a c t s p a i r s of

I

5 -30

When MOVE i s ca l led by

the code generated is

LDA A
SW B

When ca l led by I

the code generated is

LDA A
STA B
LDA C
STA D

When ca l led by

t h e code generated i s

IDA A
STA C
I;DA B
STA D

I

1' !
I

\

5-31

And when called by

MOVE

0

the code generated is

l a 4 A
STA E
WIA B
STA F
LDA C
STA G
LEA D
STA H

It is instructive t o trace the last exmple by hand t o see how

the recursive ca l l s of NOVElwork. This is an exercise l e f t

t o the reader.

I - *

6-1

0

Wncn II\'Y,RP encomtcrs a s ta teneat which it deems Incoqre -
hensibie o r i l l e@j it l is ts the s-htemcizt i n error-fornsie,
(corresponds t o a l l l i s t i n g format boolems being s e t) and then
0x1 the following l i n c (s) l i s ts a l l error comfici2ta per ta ining

t o the ststerilent.
Past error-coAments are os i n t e l l i g i b l c as the s i tua t ion

(NARP'S stxangeness) allows. sane of t h e more conmn

and/or more obscure ones w e l i s t e d and comen'ced upon below:

Lc OVERFLOW

DIBEC'I'IVE OUTSZDE BODY

(symb) REDEFINED

(symb) O X O D E ?

W X F I N E D EXPRESSION

The character - C caught NARP unawares

bena tu re termination, or garbage (l i k e
extrmeous cormas) where t n e statement
should end.

The value of the locat ion counter got
out of the ran5:e [O, 37777Bl.
And ENDF, ENDR, o r EHDM without a
natching IF, RPT, o r MACRO.
"symb" was defined (as a label) previous
t o this def in i t ion of it.
"symb" w t s used as an opcode and is not
i n the opcode table.

An undefined symbol occurs in an
expression which should be defined.

6.2 Other error comenta

If a fixed-length table ever flows, a message (name)

OVERFLOW i s pr inted (after a l i s t i n g of the offending statement
i n error-format) , followed by **H+ASSEMBLY D W M - and

termination of one assembly.
The name may be:

I__

Contains opcodes, l i terals , symbols
(both undefined and defined) .

S'X%ING STORAGE Contains MACRO def in i t ions , macro calls
and RPT expresions.

6- 2

EXPRESSION TABU Contains post-f ix Polish representations
of expressions containing undefined
s p b o l s , u n t i l a11 the symbols i n the
expression are defined.

chmge of i n p t - s o u r c e .

they axe being collected.

expressions.

INPUT Pe)IWTER S24CK 2octains o m en t ry f o r each embedded

C W C m R SmCK Holds the characters i n a symbol while

O P E W STACK Holds o p e r a d s iC the processing of

c.:

P I U Space f o r temporaries i n recursive c a l l s
of the expression eatxr.

I n addition, the following comments may appear:

D?AP AT XXXXX Error committed by NPJP a t locat ion Xxxxx;
assembly terminates.

1-0 ERROR Error In input or output of information,
assembly ternina-Les.

NO END DIRECTIVE An end-of-file encountered before an
ZKO di rec t ive ; assembly w i l l terminate
as though an EL9 d i rec t ive was given
(i .e., normally).

0
'4

.t

i

E

6- 3

6.3 Stazting an assembly

Assuming t h a t the user has entered the time-sharing system,
NARP i s cal led by h i t t i n g the rubout button u n t i l the exec
answers (by typing '@') and then typing 'NARP' followed by a dot .

Control i s then turned over t o NARP and a sowce f i l e must be

specif ied; other information may a l so be supplied, i f desired.

The general. fornat is:

c?e fau1.1; convention
@?SARP.
SOURCE FILE: f i l e naxe nune
OEUECT F IU: f i l e name none
[TEXT FII;E: f i l e name] TELETYPE

Each l i n e above i s e i the r terminated by a dot o r a semi-colon.
A dot causes assembly t o begin immediately (except after the

sowee f i l e name). The defaul t conventions are used f o r a l l

those options not explkci t ly specified.
carr iage return t o be typed, and the specif icat ion of some

option is expected.

A semi-colon causes a

The various options a re discussed i n more de ta i l below:
SOURCE FILE:

OBJ3CT FILE:

TEXT FZE:

A s soon as K4RP i s s t a r t ed t h i s l i n e i s typed and

the user must specify a f i l e containing a program
t o be assembled.
NhviP responds with 'OBJECT FILE:' on the next l i n e .
The f i l e name given spec i f ies where the binary
output from the program should go.
name i s terminated by a semi-colon, then a

carriage re turn is typed and NARP waits f o r
one of the following options t o be specif ied.
The f i l e name given spec i f ies where the l i s t i n g

of the source program and of the e r ro r messages

should go.

When he terminates the name,

If the f i l e

This option may be specified only once.

I
I b

A-1

Appendix A: L?.st of =2111. pre-defin.ed owcodes and me-defined symbols

The following table is a l i s t i n g of an i n i t i a l i z a t i o n program
used t o i n i t i a l i z e the opcode t ab le and symbol t ab le of NmP.

It w i l l be noted tha t i n some cases the OPD di rec t ive has four
operands instead of the usual three; thc fourth operand spec i f ies
t h e type (d i rec t ive , macro, or instruct ion) of the opcode being
defined. It is ~ m i l y possible t o use four operands for OPD when
XARP i s being in i t i a l i zed , and once the i n i t i a l i z a t i o n program

has been assembled, OPT) w i l l only accept three operands.

n /7

,?: c
3 2 Y

*

0

0

I

OUTPUT TO S P F C I F I F P T E L E T Y P F
ST(?PF I N S F C O V D P R Y YFNORY

!
I I

FFFEZE

F 519

W O R D 1 / 0

asc 11 TTFi x h!Q
>ILQCK " I ' D SY':B3L
F L O C K w!.Q-r SYWX

c n KI I T x o !I a L RF PF G T
FEGISTFF CWAF.)GF

f P T P, 'U 3 F: 3
S F T P1IYPI;P F I P D I Y TO I T
D F L t T E S Y Y P 3 L
E L S E
F L S E I F
END 9F P P D G F A Y
F b j D I F
END YACFiO
EN9 R E P E A T
E QLI A T E
E X T E F N A 1,
F R E E Z E . T A B L E S
FCIRGET S Y M B O L
I D E N T X F I C A T I ON S Y M P O L
I F
O'iJ'TPUT L A B E L A S L X E j R A F i Y WYMBOL

M A C R O D F F J M l l X O N
NLIMEFF OF PRGUPIFNTS
K U Y B E J ? 01; C H A R P C T E H S
TLIXJI OFF L I S T I N G
SF-!" P.!LlIVIPER H t n D I X T O '3
POP D F F I N I : T X O P)
HFLATIVF ORIGIV
F F T R I F V E O F I G I N
R E P E A T
S T R I ? ! G (FOUR CHbFACTFkS P E R k r O R P)
A L T E R N A T I V E M A C 3 9 DFF ' A 1
PRINT R E M A F < Y O N T E X T FILE
FORGET S E L E C T E D O P C O D E S

T U R N O M L I s r I w

L . A S T L I N F OF N A R P I N I T I A L I Z A T I O N P F t O G R A V .

0

//--

<.I

1 '

j
I
i

i

octal value character

0
1

2

3
t
5
6
7
10
11

12

13
14

15
16
17
20

21

22

23
24
5
26
27

octal value

30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
50 -
51
52
53
54
55
56
57

C:?:P?,C"cc-+

a
9

?

<
- -
>
?

@
A

B
C

D

E

F

G

H

I
J
K
L
M
N
0

' I

,~
octal v a k e character

60
61
62
63
64
65
66
67
70
71

72
73
74
75
76
77

135
137
lk4
147
15 2

154
155

P
Q
R
S

\

T
iJ

v
w
X
Y

c

MULTIPLE: BLANKS

END-OF-FIIX

EYD-OF-TAPE

BELL
LF
START NEW PAC-E

CR

